FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

Overview

FCOS: Fully Convolutional One-Stage Object Detection

This project hosts the code for implementing the FCOS algorithm for object detection, as presented in our paper:

FCOS: Fully Convolutional One-Stage Object Detection;
Zhi Tian, Chunhua Shen, Hao Chen, and Tong He;
In: Proc. Int. Conf. Computer Vision (ICCV), 2019.
arXiv preprint arXiv:1904.01355 

The full paper is available at: https://arxiv.org/abs/1904.01355.

Implementation based on Detectron2 is included in AdelaiDet.

A real-time model with 46FPS and 40.3 in AP on COCO minival is also available here.

Highlights

  • Totally anchor-free: FCOS completely avoids the complicated computation related to anchor boxes and all hyper-parameters of anchor boxes.
  • Better performance: The very simple one-stage detector achieves much better performance (38.7 vs. 36.8 in AP with ResNet-50) than Faster R-CNN. Check out more models and experimental results here.
  • Faster training and testing: With the same hardwares and backbone ResNet-50-FPN, FCOS also requires less training hours (6.5h vs. 8.8h) than Faster R-CNN. FCOS also takes 12ms less inference time per image than Faster R-CNN (44ms vs. 56ms).
  • State-of-the-art performance: Our best model based on ResNeXt-64x4d-101 and deformable convolutions achieves 49.0% in AP on COCO test-dev (with multi-scale testing).

Updates

  • FCOS with Fast And Diverse (FAD) neural architecture search is avaliable at FAD. (30/10/2020)
  • Script for exporting ONNX models. (21/11/2019)
  • New NMS (see #165) speeds up ResNe(x)t based models by up to 30% and MobileNet based models by 40%, with exactly the same performance. Check out here. (12/10/2019)
  • New models with much improved performance are released. The best model achieves 49% in AP on COCO test-dev with multi-scale testing. (11/09/2019)
  • FCOS with VoVNet backbones is available at VoVNet-FCOS. (08/08/2019)
  • A trick of using a small central region of the BBox for training improves AP by nearly 1 point as shown here. (23/07/2019)
  • FCOS with HRNet backbones is available at HRNet-FCOS. (03/07/2019)
  • FCOS with AutoML searched FPN (R50, R101, ResNeXt101 and MobileNetV2 backbones) is available at NAS-FCOS. (30/06/2019)
  • FCOS has been implemented in mmdetection. Many thanks to @yhcao6 and @hellock. (17/05/2019)

Required hardware

We use 8 Nvidia V100 GPUs.
But 4 1080Ti GPUs can also train a fully-fledged ResNet-50-FPN based FCOS since FCOS is memory-efficient.

Installation

Testing-only installation

For users who only want to use FCOS as an object detector in their projects, they can install it by pip. To do so, run:

pip install torch  # install pytorch if you do not have it
pip install git+https://github.com/tianzhi0549/FCOS.git
# run this command line for a demo 
fcos https://github.com/tianzhi0549/FCOS/raw/master/demo/images/COCO_val2014_000000000885.jpg

Please check out here for the interface usage.

For a complete installation

This FCOS implementation is based on maskrcnn-benchmark. Therefore the installation is the same as original maskrcnn-benchmark.

Please check INSTALL.md for installation instructions. You may also want to see the original README.md of maskrcnn-benchmark.

A quick demo

Once the installation is done, you can follow the below steps to run a quick demo.

# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
wget https://cloudstor.aarnet.edu.au/plus/s/ZSAqNJB96hA71Yf/download -O FCOS_imprv_R_50_FPN_1x.pth
python demo/fcos_demo.py

Inference

The inference command line on coco minival split:

python tools/test_net.py \
    --config-file configs/fcos/fcos_imprv_R_50_FPN_1x.yaml \
    MODEL.WEIGHT FCOS_imprv_R_50_FPN_1x.pth \
    TEST.IMS_PER_BATCH 4    

Please note that:

  1. If your model's name is different, please replace FCOS_imprv_R_50_FPN_1x.pth with your own.
  2. If you enounter out-of-memory error, please try to reduce TEST.IMS_PER_BATCH to 1.
  3. If you want to evaluate a different model, please change --config-file to its config file (in configs/fcos) and MODEL.WEIGHT to its weights file.
  4. Multi-GPU inference is available, please refer to #78.
  5. We improved the postprocess efficiency by using multi-label nms (see #165), which saves 18ms on average. The inference metric in the following tables has been updated accordingly.

Models

For your convenience, we provide the following trained models (more models are coming soon).

ResNe(x)ts:

All ResNe(x)t based models are trained with 16 images in a mini-batch and frozen batch normalization (i.e., consistent with models in maskrcnn_benchmark).

Model Multi-scale training Testing time / im AP (minival) Link
FCOS_imprv_R_50_FPN_1x No 44ms 38.7 download
FCOS_imprv_dcnv2_R_50_FPN_1x No 54ms 42.3 download
FCOS_imprv_R_101_FPN_2x Yes 57ms 43.0 download
FCOS_imprv_dcnv2_R_101_FPN_2x Yes 73ms 45.6 download
FCOS_imprv_X_101_32x8d_FPN_2x Yes 110ms 44.0 download
FCOS_imprv_dcnv2_X_101_32x8d_FPN_2x Yes 143ms 46.4 download
FCOS_imprv_X_101_64x4d_FPN_2x Yes 112ms 44.7 download
FCOS_imprv_dcnv2_X_101_64x4d_FPN_2x Yes 144ms 46.6 download

Note that imprv denotes improvements in our paper Table 3. These almost cost-free changes improve the performance by ~1.5% in total. Thus, we highly recommend to use them. The following are the original models presented in our initial paper.

Model Multi-scale training Testing time / im AP (minival) AP (test-dev) Link
FCOS_R_50_FPN_1x No 45ms 37.1 37.4 download
FCOS_R_101_FPN_2x Yes 59ms 41.4 41.5 download
FCOS_X_101_32x8d_FPN_2x Yes 110ms 42.5 42.7 download
FCOS_X_101_64x4d_FPN_2x Yes 113ms 43.0 43.2 download

MobileNets:

We update batch normalization for MobileNet based models. If you want to use SyncBN, please install pytorch 1.1 or later.

Model Training batch size Multi-scale training Testing time / im AP (minival) Link
FCOS_syncbn_bs32_c128_MNV2_FPN_1x 32 No 26ms 30.9 download
FCOS_syncbn_bs32_MNV2_FPN_1x 32 No 33ms 33.1 download
FCOS_bn_bs16_MNV2_FPN_1x 16 No 44ms 31.0 download

[1] 1x and 2x mean the model is trained for 90K and 180K iterations, respectively.
[2] All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..
[3] c128 denotes the model has 128 (instead of 256) channels in towers (i.e., MODEL.RESNETS.BACKBONE_OUT_CHANNELS in config).
[4] dcnv2 denotes deformable convolutional networks v2. Note that for ResNet based models, we apply deformable convolutions from stage c3 to c5 in backbones. For ResNeXt based models, only stage c4 and c5 use deformable convolutions. All models use deformable convolutions in the last layer of detector towers.
[5] The model FCOS_imprv_dcnv2_X_101_64x4d_FPN_2x with multi-scale testing achieves 49.0% in AP on COCO test-dev. Please use TEST.BBOX_AUG.ENABLED True to enable multi-scale testing.

Training

The following command line will train FCOS_imprv_R_50_FPN_1x on 8 GPUs with Synchronous Stochastic Gradient Descent (SGD):

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --master_port=$((RANDOM + 10000)) \
    tools/train_net.py \
    --config-file configs/fcos/fcos_imprv_R_50_FPN_1x.yaml \
    DATALOADER.NUM_WORKERS 2 \
    OUTPUT_DIR training_dir/fcos_imprv_R_50_FPN_1x

Note that:

  1. If you want to use fewer GPUs, please change --nproc_per_node to the number of GPUs. No other settings need to be changed. The total batch size does not depends on nproc_per_node. If you want to change the total batch size, please change SOLVER.IMS_PER_BATCH in configs/fcos/fcos_R_50_FPN_1x.yaml.
  2. The models will be saved into OUTPUT_DIR.
  3. If you want to train FCOS with other backbones, please change --config-file.
  4. If you want to train FCOS on your own dataset, please follow this instruction #54.
  5. Now, training with 8 GPUs and 4 GPUs can have the same performance. Previous performance gap was because we did not synchronize num_pos between GPUs when computing loss.

ONNX

Please refer to the directory onnx for an example of exporting the model to ONNX. A converted model can be downloaded here. We recommend you to use PyTorch >= 1.4.0 (or nightly) and torchvision >= 0.5.0 (or nightly) for ONNX models.

Contributing to the project

Any pull requests or issues are welcome.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows.

@inproceedings{tian2019fcos,
  title   =  {{FCOS}: Fully Convolutional One-Stage Object Detection},
  author  =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle =  {Proc. Int. Conf. Computer Vision (ICCV)},
  year    =  {2019}
}
@article{tian2021fcos,
  title   =  {{FCOS}: A Simple and Strong Anchor-free Object Detector},
  author  =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle =  {IEEE T. Pattern Analysis and Machine Intelligence (TPAMI)},
  year    =  {2021}
}

Acknowledgments

We would like to thank @yqyao for the tricks of center sampling and GIoU. We also thank @bearcatt for his suggestion of positioning the center-ness branch with box regression (refer to #89).

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact the authors.

Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Solver for Large-Scale Rank-One Semidefinite Relaxations

STRIDE: spectrahedral proximal gradient descent along vertices A Solver for Large-Scale Rank-One Semidefinite Relaxations About STRIDE is designed for

48 Dec 20, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022