Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Overview

Informative-tracking-benchmark

Informative tracking benchmark (ITB)

  • higher diversity. It contains 9 representative scenarios and 180 diverse videos.
  • more effective. Sequences are carefully selected based on chellening level, discriminative strength, and density of appearance variations.
  • more efficient. It is constructed with 7% out of 1.2 M frames allows saving 93% of evaluation time (3,625 seconds on informative benchmark vs. 50,000 seconds on all benchmarks) for a real-time tracker (24 frames per second).
  • more rigorous comparisons. (All the baseline methods are re-evaluated using the same protocol, e.g., using the same training set and finetuning hyper-parameters on a specified validate set).

An Informative Tracking Benchmark, Xin Li, Qiao Liu, Wenjie Pei, Qiuhong Shen, Yaowei Wang, Huchuan Lu, Ming-Hsuan Yang [Paper]

News:

  • 2021.12.09 The informative tracking benchmark is released.

Introduction

Along with the rapid progress of visual tracking, existing benchmarks become less informative due to redundancy of samples and weak discrimination between current trackers, making evaluations on all datasets extremely time-consuming. Thus, a small and informative benchmark, which covers all typical challenging scenarios to facilitate assessing the tracker performance, is of great interest. In this work, we develop a principled way to construct a small and informative tracking benchmark (ITB) with 7% out of 1.2 M frames of existing and newly collected datasets, which enables efficient evaluation while ensuring effectiveness. Specifically, we first design a quality assessment mechanism to select the most informative sequences from existing benchmarks taking into account 1) challenging level, 2) discriminative strength, 3) and density of appearance variations. Furthermore, we collect additional sequences to ensure the diversity and balance of tracking scenarios, leading to a total of 20 sequences for each scenario. By analyzing the results of 15 state-of-the-art trackers re-trained on the same data, we determine the effective methods for robust tracking under each scenario and demonstrate new challenges for future research direction in this field.

Dataset Samples

Dataset Download (8.15 GB) and Preparation

[GoogleDrive] [BaiduYun (Code: intb)]

After downloading, you should prepare the data in the following structure:

ITB
 |——————Scenario_folder1
 |        └——————seq1
 |        |       └————xxxx.jpg
 |        |       └————groundtruth.txt
 |        └——————seq2
 |        └——————...
 |——————Scenario_folder2
 |——————...
 └------ITB.json

Both txt and json annotation files are provided.

Evaluation ToolKit

The evaluation tookit is wrote in python. We also provide the interfaces to the pysot and pytracking tracking toolkits.

You may follow the below steps to evaluate your tracker.

  1. Download this project:

    git clone [email protected]:XinLi-zn/Informative-tracking-benchmark.git
    
  2. Run your method with one of the following ways:

    base interface.
    Integrating your method into the base_toolkit/test_tracker.py file and then running the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python test_tracker.py --dataset ITB --dataset_path /path-to/ITB
    

    pytracking interface. (pytracking link)
    Merging the files in pytracking_toolkit/pytracking to the counterpart files in your pytracking toolkit and then running the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python run_tracker.py tracker_name tracker_parameter  --dataset ITB --descrip
    

    pysot interface. (pysot link)
    Putting the pysot_toolkit into your tracker folder and adding your tracker to the 'test.py' file in the pysot_toolkit. Then run the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python -u pysot_toolkit/test.py --dataset ITB --name 'tracker_name' 
    
  3. Compute the performance score:

    Here, we use the performance analysis codes in the pysot_toolkit to compute the score. Putting the pysot_toolkit into your tracker folder and use the below commmand to compute the performance score.

    python eval.py -p ./results-example/  -d ITB -t transt
    

    The above command computes the score of the results put in the folder of './pysot_toolkit/results-example/ITB/transt*/*.txt' and it shows the overall results and the results of each scenario.

Acknowledgement

We select several sequences with the hightest quality score (defined in the paper) from existing tracking datasets including OTB2015, NFS, UAV123, NUS-PRO, VisDrone, and LaSOT. Many thanks to their great work!

  • [OTB2015 ] Object track-ing benchmark. Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. IEEE TPAMI, 2015.
  • [ NFS ] Need for speed: A benchmark for higher frame rate object tracking. Kiani Galoogahi, Hamed and Fagg, et al. ICCV 2017.
  • [ UAV123 ] A benchmark and simulator for uav tracking. Mueller, Matthias and Smith, Neil and Ghanem, Bernard. ECCV 2016.
  • [NUS-PRO ] Nus-pro: A new visual tracking challenge. Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, Shuicheng Yan. PAMI 2015.
  • [VisDrone] Visdrone-det2018: The vision meets drone object detection in image challenge results. Pengfei Zhu, Longyin Wen, et al. ECCVW 2018.
  • [ LaSOT ] Lasot: A high-quality benchmark for large-scale single object tracking. Heng Fan, Liting Lin, et al. CVPR 2019.

Contact

If you have any questions about this benchmark, please feel free to contact Xin Li at [email protected].

Owner
Xin Li
Xin Li
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023