Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

Overview

EfficientZero (NeurIPS 2021)

Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

Environments

EfficientZero requires python3 (>=3.6) and pytorch (>=1.8.0) with the development headers.

We recommend to use torch amp (--amp_type torch_amp) to accelerate training.

Prerequisites

Before starting training, you need to build the c++/cython style external packages.

cd core/ctree
bash make.sh

The distributed framework of this codebase is built on ray.

Installation

As for other packages required for this codebase, please run pip install -r requirements.txt.

Usage

Quick start

  • Train: python main.py --env BreakoutNoFrameskip-v4 --case atari --opr train --amp_type torch_amp --num_gpus 1 --num_cpus 10 --cpu_actor 1 --gpu_actor 1 --force
  • Test: python main.py --env BreakoutNoFrameskip-v4 --case atari --opr test --amp_type torch_amp --num_gpus 1 --load_model --model_path model.p \

Bash file

We provide train.sh and test.sh for training and evaluation.

  • Train:
    • With 4 GPUs (3090): bash train.sh
  • Test: bash test.sh
Required Arguments Description
--env Name of the environment
--case {atari} It's used for switching between different domains(default: atari)
--opr {train,test} select the operation to be performed
--amp_type {torch_amp,none} use torch amp for acceleration
Other Arguments Description
--force will rewrite the result directory
--num_gpus 4 how many GPUs are available
--num_cpus 96 how many CPUs are available
--cpu_actor 14 how many cpu workers
--gpu_actor 20 how many gpu workers
--seed 0 the seed
--use_priority use priority in replay buffer sampling
--use_max_priority use the max priority for the newly collectted data
--amp_type 'torch_amp' use torch amp for acceleration
--info 'EZ-V0' some tags for you experiments
--p_mcts_num 8 set the parallel number of envs in self-play
--revisit_policy_search_rate 0.99 set the rate of reanalyzing policies
--use_root_value use root values in value targets (require more GPU actors)
--render render in evaluation
--save_video save videos for evaluation

Architecture Designs

The architecture of the training pipeline is shown as follows:

Some suggestions

  • To use a smaller model, you can choose smaller dim of the projection layers (Eg: 256/64) and the LSTM hidden layer (Eg: 64) in the config.
  • For GPUs with 10G memory instead of 20G memory, you can allocate 0.25 gpu for each GPU maker (@ray.remote(num_gpus=0.25)) in core/reanalyze_worker.py.

New environment registration

If you wan to apply EfficientZero to a new environment like mujoco. Here are the steps for registration:

  1. Follow the directory config/atari and create dir for the env at config/mujoco.
  2. Implement your MujocoConfig(BaseConfig) class and implement the models as well as your environment wrapper.
  3. Register the case at main.py.

Results

Evaluation with 32 seeds for 3 different runs (different seeds).

Citation

If you find this repo useful, please cite our paper:

@inproceedings{ye2021mastering,
  title={Mastering Atari Games with Limited Data},
  author={Weirui Ye, and Shaohuai Liu, and Thanard Kurutach, and Pieter Abbeel, and Yang Gao},
  booktitle={NeurIPS},
  year={2021}
}

Contact

If you have any question or want to use the code, please contact [email protected] .

Acknowledgement

We appreciate the following github repos a lot for their valuable code base implementations:

https://github.com/koulanurag/muzero-pytorch

https://github.com/werner-duvaud/muzero-general

https://github.com/pytorch/ELF

Owner
Weirui Ye
Weirui Ye
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021