I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

Overview

An Image Captioning codebase

This is a codebase for image captioning research.

It supports:

A simple demo colab notebook is available here

Requirements

  • Python 3
  • PyTorch 1.3+ (along with torchvision)
  • cider (already been added as a submodule)
  • coco-caption (already been added as a submodule) (Remember to follow initialization steps in coco-caption/README.md)
  • yacs
  • lmdbdict

Install

If you have difficulty running the training scripts in tools. You can try installing this repo as a python package:

python -m pip install -e .

Pretrained models

Checkout MODEL_ZOO.md.

If you want to do evaluation only, you can then follow this section after downloading the pretrained models (and also the pretrained resnet101 or precomputed bottomup features, see data/README.md).

Train your own network on COCO/Flickr30k

Prepare data.

We now support both flickr30k and COCO. See details in data/README.md. (Note: the later sections assume COCO dataset; it should be trivial to use flickr30k.)

Start training

$ python tools/train.py --id fc --caption_model newfc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 10 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 0 --checkpoint_path log_fc --save_checkpoint_every 6000 --val_images_use 5000 --max_epochs 30

or

$ python tools/train.py --cfg configs/fc.yml --id fc

The train script will dump checkpoints into the folder specified by --checkpoint_path (default = log_$id/). By default only save the best-performing checkpoint on validation and the latest checkpoint to save disk space. You can also set --save_history_ckpt to 1 to save every checkpoint.

To resume training, you can specify --start_from option to be the path saving infos.pkl and model.pth (usually you could just set --start_from and --checkpoint_path to be the same).

To checkout the training curve or validation curve, you can use tensorboard. The loss histories are automatically dumped into --checkpoint_path.

The current command use scheduled sampling, you can also set --scheduled_sampling_start to -1 to turn off scheduled sampling.

If you'd like to evaluate BLEU/METEOR/CIDEr scores during training in addition to validation cross entropy loss, use --language_eval 1 option, but don't forget to pull the submodule coco-caption.

For all the arguments, you can specify them in a yaml file and use --cfg to use the configurations in that yaml file. The configurations in command line will overwrite cfg file if there are conflicts.

For more options, see opts.py.

Train using self critical

First you should preprocess the dataset and get the cache for calculating cider score:

$ python scripts/prepro_ngrams.py --input_json data/dataset_coco.json --dict_json data/cocotalk.json --output_pkl data/coco-train --split train

Then, copy the model from the pretrained model using cross entropy. (It's not mandatory to copy the model, just for back-up)

$ bash scripts/copy_model.sh fc fc_rl

Then

$ python tools/train.py --id fc_rl --caption_model newfc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 10 --learning_rate 5e-5 --start_from log_fc_rl --checkpoint_path log_fc_rl --save_checkpoint_every 6000 --language_eval 1 --val_images_use 5000 --self_critical_after 30 --cached_tokens coco-train-idxs --max_epoch 50 --train_sample_n 5

or

$ python tools/train.py --cfg configs/fc_rl.yml --id fc_rl

You will see a huge boost on Cider score, : ).

A few notes on training. Starting self-critical training after 30 epochs, the CIDEr score goes up to 1.05 after 600k iterations (including the 30 epochs pertraining).

Generate image captions

Evaluate on raw images

Note: this doesn't work for models trained with bottomup feature. Now place all your images of interest into a folder, e.g. blah, and run the eval script:

$ python tools/eval.py --model model.pth --infos_path infos.pkl --image_folder blah --num_images 10

This tells the eval script to run up to 10 images from the given folder. If you have a big GPU you can speed up the evaluation by increasing batch_size. Use --num_images -1 to process all images. The eval script will create an vis.json file inside the vis folder, which can then be visualized with the provided HTML interface:

$ cd vis
$ python -m SimpleHTTPServer

Now visit localhost:8000 in your browser and you should see your predicted captions.

Evaluate on Karpathy's test split

$ python tools/eval.py --dump_images 0 --num_images 5000 --model model.pth --infos_path infos.pkl --language_eval 1 

The defualt split to evaluate is test. The default inference method is greedy decoding (--sample_method greedy), to sample from the posterior, set --sample_method sample.

Beam Search. Beam search can increase the performance of the search for greedy decoding sequence by ~5%. However, this is a little more expensive. To turn on the beam search, use --beam_size N, N should be greater than 1.

Evaluate on COCO test set

$ python tools/eval.py --input_json cocotest.json --input_fc_dir data/cocotest_bu_fc --input_att_dir data/cocotest_bu_att --input_label_h5 none --num_images -1 --model model.pth --infos_path infos.pkl --language_eval 0

You can download the preprocessed file cocotest.json, cocotest_bu_att and cocotest_bu_fc from link.

Miscellanea

Using cpu. The code is currently defaultly using gpu; there is even no option for switching. If someone highly needs a cpu model, please open an issue; I can potentially create a cpu checkpoint and modify the eval.py to run the model on cpu. However, there's no point using cpus to train the model.

Train on other dataset. It should be trivial to port if you can create a file like dataset_coco.json for your own dataset.

Live demo. Not supported now. Welcome pull request.

For more advanced features:

Checkout ADVANCED.md.

Reference

If you find this repo useful, please consider citing (no obligation at all):

@article{luo2018discriminability,
  title={Discriminability objective for training descriptive captions},
  author={Luo, Ruotian and Price, Brian and Cohen, Scott and Shakhnarovich, Gregory},
  journal={arXiv preprint arXiv:1803.04376},
  year={2018}
}

Of course, please cite the original paper of models you are using (You can find references in the model files).

Acknowledgements

Thanks the original neuraltalk2 and awesome PyTorch team.

Owner
Ruotian(RT) Luo
Phd student at TTIC
Ruotian(RT) Luo
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022