Code for Temporally Abstract Partial Models

Overview

Code for Temporally Abstract Partial Models

Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetarpal, Ahmed, Comanici and Precup, 2021 that is to be published at NeurIPS 2021.

Installation

  1. Clone the deepmind-research repository and cd into this directory:
git clone https://github.com/deepmind/affordances_option_models.git
  1. Now install the requirements to your system pip install -r ./requirements.txt. It is recommended to use a virtualenv to isolate dependencies.

For example:

git clone https://github.com/deepmind/affordances_option_models.git

python3 -m virtualenv affordances
source affordances/bin/activate

pip install -r affordances_option_models/requirements.txt

Usage

  1. The first step of the experiment is to build, train and save the low level options: python3 -m affordances_option_models.lp_learn_options --save_path ./options which will save the option policies into ./options/args/.... The low level options are trained by creating a reward matrix for the 75 options (see option_utils.check_option_termination) and then running value iteration.
  2. The next step is to learn the option models, policy over options and affordance models all online: python3 -m affordances_option_models.lp_learn_model_from_options --path_to_options=./options/gamma0.99/max_iterations1000/options/. See Arguments below to see how to select --affordances_name.

Arguments

  1. The default arguments for lp_learn_options.py will produce a reasonable set of option policies.
  2. For lp_learn_model_from_options.py use the argument --affordances_name to switch between the affordance that will be used for model learning. For the heuristic affordances (everything, only_pickup_drop and only_relevant_pickup_drop) the model learned will be evaluated via value iteration (i.e. planning) with every other affordance type. For the learned affordances, only learned affordances will be used in value iteration.

Experiments in Section 5.1

To reproduce the experiments with heuristics use the command

python3 -m affordances_option_models.lp_learn_model_from_options  \
--num_rollout_nodes=1 --total_steps=50000000 \
--seed=0 --affordances_name=everything

and run this command for every combination of the arguments:

  • --seed=: 0, 1, 2, 3
  • --affordances_name=: everything, only_pickup_drop, only_relevant_pickup_drop.

Experiments in Section 5.2

To reproduce the experiments with learned affordances use the command

python3 -m affordances_option_models.lp_learn_model_from_options  \
--num_rollout_nodes=1 --total_steps=50000000 --affordances_name=learned \
--seed=0 --affordances_threshold=0.0

and run this command for every combination of the arguments:

  • --seed=: 0, 1, 2, 3
  • --affordances_threshold=: 0.0, 0.1, 0.25, 0.5, 0.75.

Citation

If you use this codebase in your research, please cite the paper:

@misc{khetarpal2021temporally,
      title={Temporally Abstract Partial Models},
      author={Khimya Khetarpal and Zafarali Ahmed and Gheorghe Comanici and Doina Precup},
      year={2021},
      eprint={2108.03213},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Disclaimer

This is not an official Google product.

Owner
DeepMind
DeepMind
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022