Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

Related tags

Deep LearningCDN
Overview

CDN

Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection".

Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Miao Lu, Yongliang Wang, Chen Gao and Xiaobo Li.

Installation

Installl the dependencies.

pip install -r requirements.txt

Data preparation

HICO-DET

HICO-DET dataset can be downloaded here. After finishing downloading, unpack the tarball (hico_20160224_det.tar.gz) to the data directory.

Instead of using the original annotations files, we use the annotation files provided by the PPDM authors. The annotation files can be downloaded from here. The downloaded annotation files have to be placed as follows.

data
 └─ hico_20160224_det
     |─ annotations
     |   |─ trainval_hico.json
     |   |─ test_hico.json
     |   └─ corre_hico.npy
     :

V-COCO

First clone the repository of V-COCO from here, and then follow the instruction to generate the file instances_vcoco_all_2014.json. Next, download the prior file prior.pickle from here. Place the files and make directories as follows.

qpic
 |─ data
 │   └─ v-coco
 |       |─ data
 |       |   |─ instances_vcoco_all_2014.json
 |       |   :
 |       |─ prior.pickle
 |       |─ images
 |       |   |─ train2014
 |       |   |   |─ COCO_train2014_000000000009.jpg
 |       |   |   :
 |       |   └─ val2014
 |       |       |─ COCO_val2014_000000000042.jpg
 |       |       :
 |       |─ annotations
 :       :

For our implementation, the annotation file have to be converted to the HOIA format. The conversion can be conducted as follows.

PYTHONPATH=data/v-coco \
        python convert_vcoco_annotations.py \
        --load_path data/v-coco/data \
        --prior_path data/v-coco/prior.pickle \
        --save_path data/v-coco/annotations

Note that only Python2 can be used for this conversion because vsrl_utils.py in the v-coco repository shows a error with Python3.

V-COCO annotations with the HOIA format, corre_vcoco.npy, test_vcoco.json, and trainval_vcoco.json will be generated to annotations directory.

Pre-trained model

Download the pretrained model of DETR detector for ResNet50, and put it to the params directory.

python convert_parameters.py \
        --load_path params/detr-r50-e632da11.pth \
        --save_path params/detr-r50-pre-2stage-q64.pth \
        --num_queries 64

python convert_parameters.py \
        --load_path params/detr-r50-e632da11.pth \
        --save_path params/detr-r50-pre-2stage.pth \
        --dataset vcoco

Training

After the preparation, you can start training with the following commands. The whole training is split into two steps: CDN base model training and dynamic re-weighting training. The trainings of CDN-S for HICO-DET and V-COCO are shown as follows.

HICO-DET

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env \
        main.py \
        --pretrained params/detr-r50-pre-2stage-q64.pth \
        --output_dir logs \
        --dataset_file hico \
        --hoi_path data/hico_20160224_det \
        --num_obj_classes 80 \
        --num_verb_classes 117 \
        --backbone resnet50 \
        --num_queries 64 \
        --dec_layers_hopd 3 \
        --dec_layers_interaction 3 \
        --epochs 90 \
        --lr_drop 60 \
        --use_nms_filter

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env \
        main.py \
        --pretrained logs/checkpoint_last.pth \
        --output_dir logs/ \
        --dataset_file hico \
        --hoi_path data/hico_20160224_det \
        --num_obj_classes 80 \
        --num_verb_classes 117 \
        --backbone resnet50 \
        --num_queries 64 \
        --dec_layers_hopd 3 \
        --dec_layers_interaction 3 \
        --epochs 10 \
        --freeze_mode 1 \
        --obj_reweight \
        --verb_reweight \
        --use_nms_filter

V-COCO

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env \
        main.py \
        --pretrained params/detr-r50-pre-2stage.pth \
        --output_dir logs \
        --dataset_file vcoco \
        --hoi_path data/v-coco \
        --num_obj_classes 81 \
        --num_verb_classes 29 \
        --backbone resnet50 \
        --num_queries 100 \
        --dec_layers_hopd 3 \
        --dec_layers_interaction 3 \
        --epochs 90 \
        --lr_drop 60 \
        --use_nms_filter

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env \
        main.py \
        --pretrained logs/checkpoint_last.pth \
        --output_dir logs/ \
        --dataset_file vcoco \
        --hoi_path data/v-coco \
        --num_obj_classes 81 \
        --num_verb_classes 29 \
        --backbone resnet50 \
        --num_queries 100 \
        --dec_layers_hopd 3 \
        --dec_layers_interaction 3 \
        --epochs 10 \
        --freeze_mode 1 \
        --verb_reweight \
        --use_nms_filter

Evaluation

HICO-DET

You can conduct the evaluation with trained parameters for HICO-DET as follows.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env \
        main.py \
        --pretrained pretrained/hico_cdn_s.pth \
        --dataset_file hico \
        --hoi_path data/hico_20160224_det \
        --num_obj_classes 80 \
        --num_verb_classes 117 \
        --backbone resnet50 \
        --num_queries 64 \
        --dec_layers_hopd 3 \
        --dec_layers_interaction 3 \
        --eval \
        --use_nms_filter

V-COCO

For the official evaluation of V-COCO, a pickle file of detection results have to be generated. You can generate the file and then evaluate it as follows.

python generate_vcoco_official.py \
        --param_path pretrained/vcoco_cdn_s.pth \
        --save_path vcoco.pickle \
        --hoi_path data/v-coco \
        --dec_layers_hopd 3 \
        --dec_layers_interaction 3 \
        --use_nms_filter

cd data/v-coco
python vsrl_eval.py vcoco.pickle

Results

HICO-DET

Full (D) Rare (D) Non-rare (D) Full(KO) Rare (KO) Non-rare (KO) Download
CDN-S (R50) 31.44 27.39 32.64 34.09 29.63 35.42 model
CDN-B (R50) 31.78 27.55 33.05 34.53 29.73 35.96 model
CDN-L (R101) 32.07 27.19 33.53 34.79 29.48 36.38 model

D: Default, KO: Known object

V-COCO

Scenario 1 Scenario 2 Download
CDN-S (R50) 61.68 63.77 model
CDN-B (R50) 62.29 64.42 model
CDN-L (R101) 63.91 65.89 model

Citation

Please consider citing our paper if it helps your research.

@article{zhang2021mining,
  title={Mining the Benefits of Two-stage and One-stage HOI Detection},
  author={Zhang, Aixi and Liao, Yue and Liu, Si and Lu, Miao and Wang, Yongliang and Gao, Chen and Li, Xiaobo},
  journal={arXiv preprint arXiv:2108.05077},
  year={2021}
}

License

CDN is released under the MIT license. See LICENSE for additional details.

Acknowledge

Some of the codes are built upon PPDM, DETR and QPIC. Thanks them for their great works!

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022