QA-GNN: Question Answering using Language Models and Knowledge Graphs

Overview

QA-GNN: Question Answering using Language Models and Knowledge Graphs

This repo provides the source code & data of our paper: QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering (NAACL 2021).

@InProceedings{yasunaga2021qagnn,
  author =  {Michihiro Yasunaga and Hongyu Ren and Antoine Bosselut and Percy Liang and Jure Leskovec},
  title =   {QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering},
  year =    {2021},  
  booktitle = {North American Chapter of the Association for Computational Linguistics (NAACL)},  
}

Webpage: https://snap.stanford.edu/qagnn

Usage

0. Dependencies

Run the following commands to create a conda environment (assuming CUDA10.1):

conda create -n qagnn python=3.7
source activate qagnn
pip install numpy==1.18.3 tqdm
pip install torch==1.4.0 torchvision==0.5.0
pip install transformers==2.0.0 nltk spacy==2.1.6
python -m spacy download en

#for torch-geometric
pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html
pip install torch-cluster==1.5.4 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html
pip install torch-sparse==0.6.1 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html
pip install torch-spline-conv==1.2.0 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html
pip install torch-geometric==1.6.0 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html

1. Download Data

Download all the raw data -- ConceptNet, CommonsenseQA, OpenBookQA -- by

./download_raw_data.sh

You can preprocess the raw data by running

python preprocess.py -p <num_processes>

The script will:

  • Setup ConceptNet (e.g., extract English relations from ConceptNet, merge the original 42 relation types into 17 types)
  • Convert the QA datasets into .jsonl files (e.g., stored in data/csqa/statement/)
  • Identify all mentioned concepts in the questions and answers
  • Extract subgraphs for each q-a pair

TL;DR. The preprocessing may take long; for your convenience, you can download all the processed data by

./download_preprocessed_data.sh

The resulting file structure will look like:

.
├── README.md
└── data/
    ├── cpnet/                 (prerocessed ConceptNet)
    └── csqa/
        ├── train_rand_split.jsonl
        ├── dev_rand_split.jsonl
        ├── test_rand_split_no_answers.jsonl
        ├── statement/             (converted statements)
        ├── grounded/              (grounded entities)
        ├── graphs/                (extracted subgraphs)
        ├── ...

2. Training

For CommonsenseQA, run

./run_qagnn__csqa.sh

For OpenBookQA, run

./run_qagnn__obqa.sh

As configured in these scripts, the model needs two types of input files

  • --{train,dev,test}_statements: preprocessed question statements in jsonl format. This is mainly loaded by load_input_tensors function in utils/data_utils.py.
  • --{train,dev,test}_adj: information of the KG subgraph extracted for each question. This is mainly loaded by load_sparse_adj_data_with_contextnode function in utils/data_utils.py.

Use Your Own Dataset

  • Convert your dataset to {train,dev,test}.statement.jsonl in .jsonl format (see data/csqa/statement/train.statement.jsonl)
  • Create a directory in data/{yourdataset}/ to store the .jsonl files
  • Modify preprocess.py and perform subgraph extraction for your data
  • Modify utils/parser_utils.py to support your own dataset

Acknowledgment

This repo is built upon the following work:

Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering. Yanlin Feng*, Xinyue Chen*, Bill Yuchen Lin, Peifeng Wang, Jun Yan and Xiang Ren. EMNLP 2020.
https://github.com/INK-USC/MHGRN

Many thanks to the authors and developers!

Owner
Michihiro Yasunaga
PhD Student in Computer Science
Michihiro Yasunaga
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022