Official implementation of paper Gradient Matching for Domain Generalization

Related tags

Deep Learningfish
Overview

Gradient Matching for Domain Generalisation

This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper, we propose an inter-domain gradient matching (IDGM) objective that targets domain generalization by maximizing the inner product between gradients from different domains. To avoid computing the expensive second-order derivative of the IDGM objective, we derive a simpler first-order algorithm named Fish that approximates its optimization.

This repository contains code to reproduce the main results of our paper.

Dependencies

(Recommended) You can setup up conda environment with all required dependencies using environment.yml:

conda env create -f environment.yml
conda activate fish

Otherwise you can also install the following packages manually:

python=3.7.10
numpy=1.20.2
pytorch=1.8.1
torchaudio=0.8.1
torchvision=0.9.1
torch-cluster=1.5.9
torch-geometric=1.7.0
torch-scatter=2.0.6
torch-sparse=0.6.9
wilds=1.1.0
scikit-learn=0.24.2
scipy=1.6.3
seaborn=0.11.1
tqdm=4.61.0

Running Experiments

We offer options to train using our proposed method Fish or by using Empirical Risk Minimisation baseline. This can be specified by the --algorithm flag (either fish or erm).

CdSprites-N

We propose this simple shape-color dataset based on the dSprites dataset, which contains a collection of white 2D sprites of different shapes, scales, rotations and positions. The dataset contains N domains, where N can be specified. The goal is to classify the shape of the sprites, and there is a shape-color deterministic matching that is specific per domain. This way we have shape as the invariant feature and color as the spurious feature. On the test set, however, this correlation between color and shape is removed. See the image below for an illustration.

cdsprites

The CdSprites-N dataset can be downloaded here. After downloading, please extract the zip file to your preferred data dir (e.g. <your_data_dir>/cdsprites). The following command runs an experiment using Fish with number of domains N=15:

python main.py --dataset cdsprites --algorithm fish --data-dir <your_data_dir> --num-domains 15

The number of domains you can choose from are: N = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50.

WILDS

We include the following 6 datasets from the WILDS benchmark: amazon, camelyon, civil, fmow, iwildcam, poverty. The datasets can be downloaded automatically to a specified data folder. For instance, to train with Fish on Amazon dataset, simply run:

python main.py --dataset amazon --algorithm fish --data-dir <your_data_dir>

This should automatically download the Amazon dataset to <your_data_dir>/wilds. Experiments on other datasets can be ran by the following commands:

python main.py --dataset camelyon --algorithm fish --data-dir <your_data_dir>
python main.py --dataset civil --algorithm fish --data-dir <your_data_dir>
python main.py --dataset fmow --algorithm fish --data-dir <your_data_dir>
python main.py --dataset iwildcam --algorithm fish --data-dir <your_data_dir>
python main.py --dataset poverty --algorithm fish --data-dir <your_data_dir>

Alternatively, you can also download the datasets to <your_data_dir>/wilds manually by following the instructions here. See current results on WILDS here: image

DomainBed

For experiments on datasets including CMNIST, RMNIST, VLCS, PACS, OfficeHome, TerraInc and DomainNet, we implemented Fish on the DomainBed benchmark (see here) and you can compare our algorithm against up to 20 SOTA baselines. See current results on DomainBed here:

image

Citation

If you make use of this code in your research, we would appreciate if you considered citing the paper that is most relevant to your work:

@article{shi2021gradient,
	title="Gradient Matching for Domain Generalization.",
	author="Yuge {Shi} and Jeffrey {Seely} and Philip H. S. {Torr} and N. {Siddharth} and Awni {Hannun} and Nicolas {Usunier} and Gabriel {Synnaeve}",
	journal="arXiv preprint arXiv:2104.09937",
	year="2021"}

Contributions

We welcome contributions via pull requests. Please email [email protected] or [email protected] for any question/request.

MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

SparklyPower 3 Mar 31, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022