Official implementation of paper Gradient Matching for Domain Generalization

Related tags

Deep Learningfish
Overview

Gradient Matching for Domain Generalisation

This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper, we propose an inter-domain gradient matching (IDGM) objective that targets domain generalization by maximizing the inner product between gradients from different domains. To avoid computing the expensive second-order derivative of the IDGM objective, we derive a simpler first-order algorithm named Fish that approximates its optimization.

This repository contains code to reproduce the main results of our paper.

Dependencies

(Recommended) You can setup up conda environment with all required dependencies using environment.yml:

conda env create -f environment.yml
conda activate fish

Otherwise you can also install the following packages manually:

python=3.7.10
numpy=1.20.2
pytorch=1.8.1
torchaudio=0.8.1
torchvision=0.9.1
torch-cluster=1.5.9
torch-geometric=1.7.0
torch-scatter=2.0.6
torch-sparse=0.6.9
wilds=1.1.0
scikit-learn=0.24.2
scipy=1.6.3
seaborn=0.11.1
tqdm=4.61.0

Running Experiments

We offer options to train using our proposed method Fish or by using Empirical Risk Minimisation baseline. This can be specified by the --algorithm flag (either fish or erm).

CdSprites-N

We propose this simple shape-color dataset based on the dSprites dataset, which contains a collection of white 2D sprites of different shapes, scales, rotations and positions. The dataset contains N domains, where N can be specified. The goal is to classify the shape of the sprites, and there is a shape-color deterministic matching that is specific per domain. This way we have shape as the invariant feature and color as the spurious feature. On the test set, however, this correlation between color and shape is removed. See the image below for an illustration.

cdsprites

The CdSprites-N dataset can be downloaded here. After downloading, please extract the zip file to your preferred data dir (e.g. <your_data_dir>/cdsprites). The following command runs an experiment using Fish with number of domains N=15:

python main.py --dataset cdsprites --algorithm fish --data-dir <your_data_dir> --num-domains 15

The number of domains you can choose from are: N = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50.

WILDS

We include the following 6 datasets from the WILDS benchmark: amazon, camelyon, civil, fmow, iwildcam, poverty. The datasets can be downloaded automatically to a specified data folder. For instance, to train with Fish on Amazon dataset, simply run:

python main.py --dataset amazon --algorithm fish --data-dir <your_data_dir>

This should automatically download the Amazon dataset to <your_data_dir>/wilds. Experiments on other datasets can be ran by the following commands:

python main.py --dataset camelyon --algorithm fish --data-dir <your_data_dir>
python main.py --dataset civil --algorithm fish --data-dir <your_data_dir>
python main.py --dataset fmow --algorithm fish --data-dir <your_data_dir>
python main.py --dataset iwildcam --algorithm fish --data-dir <your_data_dir>
python main.py --dataset poverty --algorithm fish --data-dir <your_data_dir>

Alternatively, you can also download the datasets to <your_data_dir>/wilds manually by following the instructions here. See current results on WILDS here: image

DomainBed

For experiments on datasets including CMNIST, RMNIST, VLCS, PACS, OfficeHome, TerraInc and DomainNet, we implemented Fish on the DomainBed benchmark (see here) and you can compare our algorithm against up to 20 SOTA baselines. See current results on DomainBed here:

image

Citation

If you make use of this code in your research, we would appreciate if you considered citing the paper that is most relevant to your work:

@article{shi2021gradient,
	title="Gradient Matching for Domain Generalization.",
	author="Yuge {Shi} and Jeffrey {Seely} and Philip H. S. {Torr} and N. {Siddharth} and Awni {Hannun} and Nicolas {Usunier} and Gabriel {Synnaeve}",
	journal="arXiv preprint arXiv:2104.09937",
	year="2021"}

Contributions

We welcome contributions via pull requests. Please email [email protected] or [email protected] for any question/request.

(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023