MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files
Overview
Deep learning library featuring a higher-level API for TensorFlow.
TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of
A faster pytorch implementation of faster r-cnn
A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset
Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin
Code samples for my book "Neural Networks and Deep Learning"
Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod
A python library for implementing a recommender system
python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis
FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning
Continual learning datasets Introduction This repository contains PyTorch image
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination
InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.
BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa
Learning Continuous Signed Distance Functions for Shape Representation
DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a
Distributed Evolutionary Algorithms in Python
DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks
DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)
Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"
SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th
N-Omniglot is a large neuromorphic few-shot learning dataset
N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding
Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim
Efficiently Disentangle Causal Representations
Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"
(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza