Tightness-aware Evaluation Protocol for Scene Text Detection

Overview

TIoU-metric

Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code.

State-of-the-art Results on Total-Text and CTW1500 (TIoU)

We sincerely appreciate the authors of recent and previous state-of-the-art methods for providing their results for evaluating TIoU metric in curved text benchmarks. The results are listed below:

Total-Text

Methods on Total-Text TIoU-Recall (%) TIoU-Precision (%) TIoU-Hmean (%) Publication
LSN+CC [paper] 48.4 59.8 53.5 arXiv 1903
Polygon-FRCNN-3 [paper] 47.9 61.9 54.0 IJDAR 2019
CTD+TLOC [paper][code] 50.8 62.0 55.8 arXiv 1712
ATRR [paper] 53.7 63.5 58.2 CVPR 2019
PSENet [paper][code] 53.3 66.9 59.3 CVPR 2019
CRAFT [paper] 54.1 65.5 59.3 CVPR 2019
TextField [paper] 58.0 63.0 60.4 TIP 2019
Mask TextSpotter [paper] 54.5 68.0 60.5 ECCV 2018
SPCNet [paper][code] 61.8 69.4 65.4 AAAI 2019

CTW1500

Methods on CTW1500 TIoU-Recall (%) TIoU-Precision (%) TIoU-Hmean (%) Publication
CTD+TLOC [paper][code] 42.5 53.9 47.5 arXiv 1712
ATRR [paper] 54.9 61.6 58.0 CVPR 2019
LSN+CC [paper] 55.9 64.8 60.0 arXiv 1903
PSENet [paper][code] 54.9 67.6 60.6 CVPR 2019
CRAFT [paper] 56.4 66.3 61.0 CVPR 2019
MSR [paper] 56.3 67.3 61.3 arXiv 1901
TextField [paper] 57.2 66.2 61.4 TIP 2019
TextMountain [paper] 60.7 68.1 64.2 arXiv 1811
PAN Mask R-CNN [paper] 61.0 70.0 65.2 WACV 2019

Description

Evaluation protocols plays key role in the developmental progress of text detection methods. There are strict requirements to ensure that the evaluation methods are fair, objective and reasonable. However, existing metrics exhibit some obvious drawbacks:

*Unreasonable cases obtained using recent evaluation metrics. (a), (b), (c), and (d) all have the same IoU of 0.66 against the GT. Red: GT. Blue: detection.
  • As shown in (a), previous metrics consider that the GT has been entirely recalled.

  • As shown in (b), (c), and (d), even if containing background noise, previous metrics consider such detection to have 100% precision.

  • Previous metrics consider detections (a), (b), (c), and (d) to be equivalent perfect detections.

  • Previous metrics severely rely on an IoU threshold. High IoU threshold may discard some satisfactory bounding boxes, while low IoU threshold may include several inexact bounding boxes.

To address many existing issues of previous evaluation metrics, we propose an improved evaluation protocol called Tightnessaware Intersect-over-Union (TIoU) metric that could quantify:

  • Completeness of ground truth

  • Compactness of detection

  • Tightness of matching degree

We hope this work can raise the attentions of the text detection evaluation metrics and serve as a modest spur to more valuable contributions. More details can be found on our paper.

Clone the TIoU repository

Clone the TIoU-metric repository

git clone https://github.com/Yuliang-Liu/TIoU-metric.git --recursive

Getting Started

Install required module

pip install Polygon2

Then run

python script.py -g=gt.zip -s=pixellinkch4.zip

After that you can see the evaluation resutls.

You can simply replace pixellinkch4.zip with your own dection results, and make sure your dection format follows the same as ICDAR 2015.

Joint Word&Text-Line Evaluation

To test your detection with our joint Word&Text-Line solution, simply

cd Word_Text-Line

Then run the code

python script.py -g=gt.zip -gl=gt_textline.zip -s=pixellinkch4.zip

Support Curved Text Evaluation

Curved text requires polygonal input with mutable number of points. To evaluate your results on recent curved text benchmarks Total-text or SCUT-CTW1500, you can refer to curved-tiou/readme.md.

Example Results

Qualitative results:

*Qualitative visualization of TIoU metric. Blue: Detection. Bold red: Target GT region. Light red: Other GT regions. Rec.: Recognition results by CRNN [24]. NED: Normalized edit distance. Previous metrics evaluate all detection results and target GTs as 100% precision and recall, respectively, while in TIoU metric, all matching pairs are penalized by different degrees. Ct is defined in Eq. 10. Ot is defined in Eq. 13. Please refer to our paper for all the references.

ICDAR 2013 results:

*Comparison of evaluation methods on ICDAR 2013 for general detection frameworks and previous state-of-the-art methods. det: DetEval. i: IoU. e1: End-to-end recognition results by using CRNN [24]. e2: End-to-end recognition results by using RARE [25]. t: TIoU.

Line chart:

*(a) X-axis represents the detection methods listed in the Table above, and Y-axis represents the values of the F-measures.

ICDAR 2015 results:

*Comparison of metrics on the ICDAR 2015 challenge 4. Word&Text-Line Annotations use our new solution to address OM and MO issues. i: IoU. s: SIoU. t: TIoU.

Citation

If you find our metric useful for your reserach, please cite

@article{liu2019tightness,
  title={Tightness-aware Evaluation Protocol for Scene Text Detection},
  author={Liu, Yuliang and Jin, Lianwen and Xie, Zecheng and Luo, Canjie and Zhang, Shuaitao and Xie, Lele},
  journal={CVPR},
  year={2019}
}

References

If you are insterested in developing better scene text detection metrics, some references recommended here might be useful.

[1] Wolf, Christian, and Jean-Michel Jolion. "Object count/area graphs for the evaluation of object detection and segmentation algorithms." International Journal of Document Analysis and Recognition (IJDAR) 8.4 (2006): 280-296.

[2] Calarasanu, Stefania, Jonathan Fabrizio, and Severine Dubuisson. "What is a good evaluation protocol for text localization systems? Concerns, arguments, comparisons and solutions." Image and Vision Computing 46 (2016): 1-17.

[3] Dangla, Aliona, et al. "A first step toward a fair comparison of evaluation protocols for text detection algorithms." 2018 13th IAPR International Workshop on Document Analysis Systems (DAS). IEEE, 2018.

[4] Shi, Baoguang, et al. "ICDAR2017 competition on reading chinese text in the wild (RCTW-17)." 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). Vol. 1. IEEE, 2017.

Feedback

Suggestions and opinions of this metric (both positive and negative) are greatly welcome. Please contact the authors by sending email to [email protected] or [email protected].

Owner
Yuliang Liu
MMLab; South China University of Technology; University of Adelaide
Yuliang Liu
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022