PyTorch implementation for 3D human pose estimation

Overview

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach

This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, Yichen Wei, Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach ICCV 2017 (arXiv:1704.02447)

Note: This repository has been updated and is different from the method discribed in the paper. To fully reproduce the results in the paper, please checkout the original torch implementation or our pytorch re-implementation branch (slightly worse than torch). We also provide a clean 2D hourglass network branch.

The updates include:

  • Change network backbone to ResNet50 with deconvolution layers (Xiao et al. ECCV2018). Training is now about 3x faster than the original hourglass net backbone (but no significant performance improvement).
  • Change the depth regression sub-network to a one-layer depth map (described in our StarMap project).
  • Change the Human3.6M dataset to official release in ECCV18 challenge.
  • Update from python 2.7 and pytorch 0.1.12 to python 3.6 and pytorch 0.4.1.

Contact: [email protected]

Installation

The code was tested with Anaconda Python 3.6 and PyTorch v0.4.1. After install Anaconda and Pytorch:

  1. Clone the repo:

    POSE_ROOT=/path/to/clone/pytorch-pose-hg-3d
    git clone https://github.com/xingyizhou/pytorch-pose-hg-3d POSE_ROOT
    
  2. Install dependencies (opencv, and progressbar):

    conda install --channel https://conda.anaconda.org/menpo opencv
    conda install --channel https://conda.anaconda.org/auto progress
    
  3. Disable cudnn for batch_norm (see issue):

    # PYTORCH=/path/to/pytorch
    # for pytorch v0.4.0
    sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    # for pytorch v0.4.1
    sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    
  4. Optionally, install tensorboard for visializing training.

    pip install tensorflow
    

Demo

  • Download our pre-trained model and move it to models.
  • Run python demo.py --demo /path/to/image/or/image/folder [--gpus -1] [--load_model /path/to/model].

--gpus -1 is for CPU mode. We provide example images in images/. For testing your own image, it is important that the person should be at the center of the image and most of the body parts should be within the image.

Benchmark Testing

To test our model on Human3.6 dataset run

python main.py --exp_id test --task human3d --dataset fusion_3d --load_model ../models/fusion_3d_var.pth --test --full_test

The expected results should be 64.55mm.

Training

  • Prepare the training data:

    ${POSE_ROOT}
    |-- data
    `-- |-- mpii
        `-- |-- annot
            |   |-- train.json
            |   |-- valid.json
            `-- images
                |-- 000001163.jpg
                |-- 000003072.jpg
    `-- |-- h36m
        `-- |-- ECCV18_Challenge
            |   |-- Train
            |   |-- Val
            `-- msra_cache
                `-- |-- HM36_eccv_challenge_Train_cache
                    |   |-- HM36_eccv_challenge_Train_w288xh384_keypoint_jnt_bbox_db.pkl
                    `-- HM36_eccv_challenge_Val_cache
                        |-- HM36_eccv_challenge_Val_w288xh384_keypoint_jnt_bbox_db.pkl
    
  • Stage1: Train 2D pose only. model, log

python main.py --exp_id mpii
  • Stage2: Train on 2D and 3D data without geometry loss (drop LR at 45 epochs). model, log
python main.py --exp_id fusion_3d --task human3d --dataset fusion_3d --ratio_3d 1 --weight_3d 0.1 --load_model ../exp/mpii/model_last.pth --num_epoch 60 --lr_step 45
  • Stage3: Train with geometry loss. model, log
python main.py --exp_id fusion_3d_var --task human3d --dataset fusion_3d --ratio_3d 1 --weight_3d 0.1 --weight_var 0.01 --load_model ../models/fusion_3d.pth  --num_epoch 10 --lr 1e-4

Citation

@InProceedings{Zhou_2017_ICCV,
author = {Zhou, Xingyi and Huang, Qixing and Sun, Xiao and Xue, Xiangyang and Wei, Yichen},
title = {Towards 3D Human Pose Estimation in the Wild: A Weakly-Supervised Approach},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}
Owner
Xingyi Zhou
CS Ph.D. student at UT Austin.
Xingyi Zhou
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022