Image Segmentation and Object Detection in Pytorch

Overview

Image Segmentation and Object Detection in Pytorch

Pytorch-Segmentation-Detection is a library for image segmentation and object detection with reported results achieved on common image segmentation/object detection datasets, pretrained models and scripts to reproduce them.

Segmentation

PASCAL VOC 2012

Implemented models were tested on Restricted PASCAL VOC 2012 Validation dataset (RV-VOC12) or Full PASCAL VOC 2012 Validation dataset (VOC-2012) and trained on the PASCAL VOC 2012 Training data and additional Berkeley segmentation data for PASCAL VOC 12.

You can find all the scripts that were used for training and evaluation here.

This code has been used to train networks with this performance:

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link Related paper
Resnet-18-8s RV-VOC12 59.0 in prog. in prog. 28 ms. Dropbox DeepLab
Resnet-34-8s RV-VOC12 68.0 in prog. in prog. 50 ms. Dropbox DeepLab
Resnet-50-16s VOC12 66.5 in prog. in prog. in prog. in prog. DeepLab
Resnet-50-8s VOC12 67.0 in prog. in prog. in prog. in prog. DeepLab
Resnet-50-8s-deep-sup VOC12 67.1 in prog. in prog. in prog. in prog. DeepLab
Resnet-101-16s VOC12 68.6 in prog. in prog. in prog. in prog. DeepLab
PSP-Resnet-18-8s VOC12 68.3 n/a n/a n/a in prog. PSPnet
PSP-Resnet-50-8s VOC12 73.6 n/a n/a n/a in prog. PSPnet

Some qualitative results:

Alt text

Endovis 2017

Implemented models were trained on Endovis 2017 segmentation dataset and the sequence number 3 was used for validation and was not included in training dataset.

The code to acquire the training and validating the model is also provided in the library.

Additional Qualitative results can be found on this youtube playlist.

Binary Segmentation

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link
Resnet-9-8s Seq # 3 * 96.1 in prog. in prog. 13.3 ms. Dropbox
Resnet-18-8s Seq # 3 96.0 in prog. in prog. 28 ms. Dropbox
Resnet-34-8s Seq # 3 in prog. in prog. in prog. 50 ms. in prog.

Resnet-9-8s network was tested on the 0.5 reduced resoulution (512 x 640).

Qualitative results (on validation sequence):

Alt text

Multi-class Segmentation

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link
Resnet-18-8s Seq # 3 81.0 in prog. in prog. 28 ms. Dropbox
Resnet-34-8s Seq # 3 in prog. in prog. in prog. 50 ms. in prog

Qualitative results (on validation sequence):

Alt text

Cityscapes

The dataset contains video sequences recorded in street scenes from 50 different cities, with high quality pixel-level annotations of 5 000 frames. The annotations contain 19 classes which represent cars, road, traffic signs and so on.

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link
Resnet-18-32s Validation set 61.0 in prog. in prog. in prog. in prog.
Resnet-18-8s Validation set 60.0 in prog. in prog. 28 ms. Dropbox
Resnet-34-8s Validation set 69.1 in prog. in prog. 50 ms. Dropbox
Resnet-50-16s-PSP Validation set 71.2 in prog. in prog. in prog. in prog.

Qualitative results (on validation sequence):

Whole sequence can be viewed here.

Alt text

Installation

This code requires:

  1. Pytorch.

  2. Some libraries which can be acquired by installing Anaconda package.

    Or you can install scikit-image, matplotlib, numpy using pip.

  3. Clone the library:

git clone --recursive https://github.com/warmspringwinds/pytorch-segmentation-detection

And use this code snippet before you start to use the library:

import sys
# update with your path
# All the jupyter notebooks in the repository already have this
sys.path.append("/your/path/pytorch-segmentation-detection/")
sys.path.insert(0, '/your/path/pytorch-segmentation-detection/vision/')

Here we use our pytorch/vision fork, which might be merged and futher merged in a future. We have added it as a submodule to our repository.

  1. Download segmentation or detection models that you want to use manually (links can be found below).

About

If you used the code for your research, please, cite the paper:

@article{pakhomov2017deep,
  title={Deep Residual Learning for Instrument Segmentation in Robotic Surgery},
  author={Pakhomov, Daniil and Premachandran, Vittal and Allan, Max and Azizian, Mahdi and Navab, Nassir},
  journal={arXiv preprint arXiv:1703.08580},
  year={2017}
}

During implementation, some preliminary experiments and notes were reported:

Owner
Daniil Pakhomov
Phd student at JHU. Research interests: Image Classification, Image Segmentation, Face Detection and Face Recognition mostly based on Deep Learning.
Daniil Pakhomov
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022