A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

Overview

MedMCQA

MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering

A large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

The MedMCQA task can be formulated as X = {Q, O} where Q represents the questions in the text, O represents the candidate options, multiple candidate answers are given for each question O = {O1, O2, ..., On}. The goal is to select the single or multiple answers from the option set.

If you would like to use the data or code, please cite the paper:

@InProceedings{pmlr-v174-pal22a,
  title = 	 {MedMCQA: A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering},
  author =       {Pal, Ankit and Umapathi, Logesh Kumar and Sankarasubbu, Malaikannan},
  booktitle = 	 {Proceedings of the Conference on Health, Inference, and Learning},
  pages = 	 {248--260},
  year = 	 {2022},
  editor = 	 {Flores, Gerardo and Chen, George H and Pollard, Tom and Ho, Joyce C and Naumann, Tristan},
  volume = 	 {174},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {07--08 Apr},
  publisher =    {PMLR},
  pdf = 	 {https://proceedings.mlr.press/v174/pal22a/pal22a.pdf},
  url = 	 {https://proceedings.mlr.press/v174/pal22a.html},
  abstract = 	 {This paper introduces MedMCQA, a new large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address real-world medical entrance exam questions. More than 194k high-quality AIIMS & NEET PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects are collected with an average token length of 12.77 and high topical diversity. Each sample contains a question, correct answer(s), and other options which requires a deeper language understanding as it tests the 10+ reasoning abilities of a model across a wide range of medical subjects & topics. A detailed explanation of the solution, along with the above information, is provided in this study.}
}

GitHub license GitHub commit PRs Welcome

Dataset Description

Links
Homepage: https://medmcqa.github.io
Repository: https://github.com/medmcqa/medmcqa
Paper: https://arxiv.org/abs/2203.14371
Leaderboard: https://paperswithcode.com/dataset/medmcqa
Point of Contact: Aaditya Ura, Logesh

Dataset Summary

MedMCQA is a large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address real-world medical entrance exam questions.

MedMCQA has more than 194k high-quality AIIMS & NEET PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects are collected with an average token length of 12.77 and high topical diversity.

Each sample contains a question, correct answer(s), and other options which require a deeper language understanding as it tests the 10+ reasoning abilities of a model across a wide range of medical subjects & topics. A detailed explanation of the solution, along with the above information, is provided in this study.

MedMCQA provides an open-source dataset for the Natural Language Processing community. It is expected that this dataset would facilitate future research toward achieving better QA systems. The dataset contains questions about the following topics:

  • Anesthesia
  • Anatomy
  • Biochemistry
  • Dental
  • ENT
  • Forensic Medicine (FM)
  • Obstetrics and Gynecology (O&G)
  • Medicine
  • Microbiology
  • Ophthalmology
  • Orthopedics
  • Pathology
  • Pediatrics
  • Pharmacology
  • Physiology
  • Psychiatry
  • Radiology
  • Skin
  • Preventive & Social Medicine (PSM)
  • Surgery

Requirements

pip3 install -r requirements.txt

Data Download and Preprocessing

download the data from below link

data : https://drive.google.com/uc?export=download&id=15VkJdq5eyWIkfb_aoD3oS8i4tScbHYky

Experiments code

To run the experiments mentioned in the paper, follow the below steps

  • Clone the repo
  • Install the dependencies

pip3 install -r requirements.txt

  • Download the data from google drive link
  • Unzip the data
  • run below command with the data path

python3 train.py --model bert-base-uncased --dataset_folder_name "/content/medmcqa_data/"

Supported Tasks and Leaderboards

multiple-choice-QA, open-domain-QA: The dataset can be used to train a model for multi-choice questions answering, open domain questions answering. Questions in these exams are challenging and generally require deeper domain and language understanding as it tests the 10+ reasoning abilities across a wide range of medical subjects & topics.

Languages

The questions and answers are available in English.

Dataset Structure

Data Instances

{
    "question":"A 40-year-old man presents with 5 days of productive cough and fever. Pseudomonas aeruginosa is isolated from a pulmonary abscess. CBC shows an acute effect characterized by marked leukocytosis (50,000 mL) and the differential count reveals a shift to left in granulocytes. Which of the following terms best describes these hematologic findings?",
    "exp": "Circulating levels of leukocytes and their precursors may occasionally reach very high levels (>50,000 WBC mL). These extreme elevations are sometimes called leukemoid reactions because they are similar to the white cell counts observed in leukemia, from which they must be distinguished. The leukocytosis occurs initially because of the accelerated release of granulocytes from the bone marrow (caused by cytokines, including TNF and IL-1) There is a rise in the number of both mature and immature neutrophils in the blood, referred to as a shift to the left. In contrast to bacterial infections, viral infections (including infectious mononucleosis) are characterized by lymphocytosis Parasitic infestations and certain allergic reactions cause eosinophilia, an increase in the number of circulating eosinophils. Leukopenia is defined as an absolute decrease in the circulating WBC count.",
    "cop":1,
    "opa":"Leukemoid reaction",
    "opb":"Leukopenia",
    "opc":"Myeloid metaplasia",
    "opd":"Neutrophilia",
    "subject_name":"Pathology",
    "topic_name":"Basic Concepts and Vascular changes of Acute Inflammation",
    "id":"4e1715fe-0bc3-494e-b6eb-2d4617245aef",
    "choice_type":"single"
}

Data Fields

  • id : a string question identifier for each example
  • question : question text (a string)
  • opa : Option A
  • opb : Option B
  • opc : Option C
  • opd : Option D
  • cop : Correct option (Answer of the question)
  • choice_type : Question is single-choice or multi-choice
  • exp : Expert's explanation of the answer
  • subject_name : Medical Subject name of the particular question
  • topic_name : Medical topic name from the particular subject

Data Splits

The goal of MedMCQA is to emulate the rigor of real word medical exams. To enable that, a predefined split of the dataset is provided. The split is by exams instead of the given questions. This also ensures the reusability and generalization ability of the models.

  • The training set of MedMCQA consists of all the collected mock & online test series.
  • The test set consists of all AIIMS PG exam MCQs (years 1991-present).
  • The development set consists of NEET PG exam MCQs (years 2001-present) to approximate real exam evaluation.

Similar questions from train , test and dev set were removed based on similarity. The final split sizes are as follow:

Train Valid Test
Question # 182,822 6,150 4,183
Vocab 94,231 11,218 10,800
Max Ques tokens 220 135 88
Max Ans tokens 38 21 25

Model Submission and Test Set Evaluation

To preserve the integrity of test results, we do not release the test set's ground-truth to the public. Instead, we require you to use the test-set to evaluate the model and send the predictions along with unique question id id in csv format to below email addresses

Example :

id Prediction (correct option)
84f328d3-fca4-422d-8fb2-19d55eb31503 2
bb85e248-b2e9-48e8-a887-67c1aff15b6d 3

aadityaura [at] gmail.com, logesh.umapathi [at] saama.com

Owner
MedMCQA
MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering
MedMCQA
Let Xiao Ai speakers control third-party devices

A stupid way to extend miot/xiaoai. Demo for Panasonic Bath Bully FV-RB20VL1 逆向 Panasonic Smart China,获得控制浴霸的请求信息(HTTP 请求),详见 apps/panasonic.py; 2. 通过

bin 14 Jul 07, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
Creating an LSTM model to generate music

Music-Generation Creating an LSTM model to generate music music-generator Used to create basic sin wave sounds music-ai Contains the functions to conv

Jerin Joseph 2 Dec 02, 2021
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

Facebook Research 4.3k Jan 01, 2023
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Stanford CoreNLP provides a set of natural language analysis tools written in Java

Stanford CoreNLP Stanford CoreNLP provides a set of natural language analysis tools written in Java. It can take raw human language text input and giv

Stanford NLP 8.8k Jan 07, 2023
Search with BERT vectors in Solr and Elasticsearch

Search with BERT vectors in Solr and Elasticsearch

Dmitry Kan 123 Dec 29, 2022
Comprehensive-E2E-TTS - PyTorch Implementation

A Non-Autoregressive End-to-End Text-to-Speech (text-to-wav), supporting a family of SOTA unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultima

Keon Lee 114 Nov 13, 2022
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
This is a modification of the OpenAI-CLIP repository of moein-shariatnia

This is a modification of the OpenAI-CLIP repository of moein-shariatnia

Sangwon Beak 2 Mar 04, 2022
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022