Reinforcement learning for self-driving in a 3D simulation

Overview

SelfDrive_AI

Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D)

1. Requirements for the SelfDrive_AI Gym


You need Python 3.6 or later to run the simulation. (Note: the current environment is only supported in windows) Also, you can directly interact with the simulation by clicking the exe file and then by using W,A, S and D keys.

Please follow the two links below to install Unity-Gym and Stable-Baselines. Also, you can train it using your custom reinforcement learning algorithms by following the OpenAI gym structure (https://gym.openai.com/).

Install Unity-Gym

Install Stable-Baselines3

mlagents can be installed using pip:

$ python3 -m pip install mlagents

The image below illustrates the target goal of the AIcar, where the car needs to explore all the trajectories to find the bridge first.

2. (Training) You can train the environment by using the code below which has OpenAI gym structure. It will save the training results into a log directory which you can view using tensorboard. Feel free to change the parameters inside the code

from stable_baselines3 import PPO, SAC, ppo
from mlagents_envs.side_channel.engine_configuration_channel import EngineConfigurationChannel
channel = EngineConfigurationChannel()
from gym_unity.envs import UnityToGymWrapper
from mlagents_envs.environment import UnityEnvironment
import time,os
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.policies import ActorCriticPolicy
import math


env_name = "./UnityEnv"
speed = 15


env = UnityEnvironment(env_name,seed=1, side_channels=[channel])
channel.set_configuration_parameters(time_scale =speed)
env= UnityToGymWrapper(env, uint8_visual=False) # OpenAI gym interface created using UNITY

time_int = int(time.time())

# Diretories for storing results 
log_dir = "stable_results/Euler_env_3{}/".format(time_int)
log_dirTF = "stable_results/tensorflow_log_Euler3{}/".format(time_int) 
os.makedirs(log_dir, exist_ok=True)

env = Monitor(env, log_dir, allow_early_resets=True)
env = DummyVecEnv([lambda: env])  # The algorithms require a vectorized environment to run


model = PPO(ActorCriticPolicy, env, verbose=1, tensorboard_log=log_dirTF, device='cuda')
model.learn(int(200000)) # you can change the step size
time_int2 = int(time.time()) 
print('TIME TAKEN for training',time_int-time_int2)
# # save the model
model.save("Env_model")


# # # # # LOAD FOR TESTING
# del model
model = PPO.load("Env_model")

obs = env.reset()

# Test the agent for 1000 steps after training

for i in range(400):
    action, states = model.predict(obs)
    obs, rewards, done, info = env.step(action)
    env.render()



To monitor the training progress using tensorboard you type the following command from the terminal

$ tensorboard --logdir "HERE PUT THE PATH TO THE DIRECTORY"

Glimpse from the simulation environment

3. (Testing) The following code can be used to test the trained Humanoid Agent

from stable_baselines3 import PPO, SAC, ppo
from mlagents_envs.side_channel.engine_configuration_channel import EngineConfigurationChannel
channel = EngineConfigurationChannel()
from gym_unity.envs import UnityToGymWrapper
from mlagents_envs.environment import UnityEnvironment
import time,os
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.policies import ActorCriticPolicy
import math


env_name = "./UnityEnv"
speed = 1


env = UnityEnvironment(env_name,seed=1, side_channels=[channel])
channel.set_configuration_parameters(time_scale =speed)
env= UnityToGymWrapper(env, uint8_visual=False) # OpenAI gym interface created using UNITY

time_int = int(time.time())

# Diretories for storing results
log_dir = "stable_results/Euler_env_3{}/".format(time_int)
log_dirTF = "stable_results/tensorflow_log_Euler3{}/".format(time_int)
os.makedirs(log_dir, exist_ok=True)

env = Monitor(env, log_dir, allow_early_resets=True)
env = DummyVecEnv([lambda: env])  # The algorithms require a vectorized environment to run


model = PPO.load("Env_model")

obs = env.reset()

# Test the agent for 1000 steps after training

for i in range(1000):
    action, states = model.predict(obs)
    obs, rewards, done, info = env.step(action)
    env.render()

***Note: I am still developing the project by inducing more challenging constraints.

Owner
Surajit Saikia
Roboticist | PhD in AI | Deep learning, Reinforcement learning and Computer Vision.
Surajit Saikia
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022