Diagnostic tests for linguistic capacities in language models

Overview

LM diagnostics

This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models, by Allyson Ettinger.

Diagnostic test data

The datasets folder contains TSV files with data for each diagnostic test, along with explanatory README files for each dataset.

Code

[All code now updated to be run with Python 3.]

The code in this section can be used to process the diagnostic datasets for input to a language model, and then to run the diagnostic tests on that language model's predictions. The code should be used in three steps:

Step 1: Process datasets to produce inputs for LM

proc_datasets.py can be used to process the provided datasets into 1) <testname>-contextlist files containing contexts (one per line) on which the LM's predictions should be conditioned, and b) <testname>-targetlist files containing target words (one per line, aligned with the contexts in *-contextlist) for which you will need probabilities conditioned on the corresponding contexts. Repeats in *-contextlist are intentional, to align with the targets in *-targetlist.

Basic usage:

python proc_datasets.py \
  --outputdir <location for output files> \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv \
  --add_mask_tok
  • add_mask_tok flag will append '[MASK]' to the contexts in *-contextlist, for use with BERT.
  • <testname> comes from the following list: cprag, role, negsimp, negnat for CPRAG-34, ROLE-88, NEG-88-SIMP and NEG-88-NAT, respectively.

Step 2: Get LM predictions/probabilities

You will need to produce two files: one containing top word predictions conditioned on each context, and one containing the probabilities for each target word conditioned on its corresponding context.

Predictions: Model word predictions should be written to a file with naming modelpreds-<testname>-<modelname>. Each line of this file should contain the top word predictions conditioned on the context in the corresponding line in *-contextlist. Word predictions on a given line should be separated by whitespace. Number of predictions per line should be no less than the highest k that you want to use for accuracy tests.

Probabilities Model target probabilities should be written to a file with naming modeltgtprobs-<testname>-<modelname>. Each line of this file should contain the probability of the target word on the corresponding line of *-targetlist, conditioned on the context on the corresponding line of *-contextlist.

  • <testname> list is as above. <modelname> should be the name of the model that will be input to the code in Step 3.

Step 3: Run accuracy and sensitivity tests for each diagnostic

prediction_accuracy_tests.py takes modelpreds-<testname>-<modelname> as input and runs word prediction accuracy tests.

Basic usage:

python prediction_accuracy_tests.py \
  --preddir <location of modelpreds-<testname>-<modelname>> \
  --resultsdir <location for results files> \
  --models <names of models to be tested, e.g., bert-base-uncased bert-large-uncased> \
  --k_values <list of k values to be tested, e.g., 1 5> \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv

sensitivity_tests.py takes modeltgtprobs-<testname>-<modelname> as input and runs sensitivity tests.

Basic usage:

python sensitivity_tests.py \
  --probdir <location of modelpreds-<testname>-<modelname>> \
  --resultsdir <location for results files> \
  --models <names of models to be tested, e.g., bert-base-uncased bert-large-uncased> \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv

Experimental code

run_diagnostics_bert.py is the code that was used for the experiments on BERTBASE and BERTLARGE reported in the paper, including perturbations.

Example usage:

python run_diagnostics_bert.py \
  --cprag_stim datasets/CPRAG-34/CPRAG-34.tsv \
  --role_stim datasets/ROLE-88/ROLE-88.tsv \
  --negnat_stim datasets/NEG-88/NEG-88-NAT.tsv \
  --negsimp_stim datasets/NEG-88/NEG-88-SIMP.tsv \
  --resultsdir <location for results files> \
  --bertbase <BERT BASE location> \
  --bertlarge <BERT LARGE location> \
  --incl_perturb
  • bertbase and bertlarge specify locations for PyTorch BERTBASE and BERTLARGE models -- each folder is expected to include vocab.txt, bert_config.json, and pytorch_model.bin for the corresponding PyTorch BERT model. (Note that experiments were run with the original pytorch-pretrained-bert version, so I can't guarantee identical results with the updated pytorch-transformers.)
  • incl_perturb runs experiments with all perturbations reported in the paper. Without this flag, only runs experiments without perturbations.
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023