Can we learn gradients by Hamiltonian Neural Networks?

Related tags

Deep LearningOPT-ML
Overview

Can we learn gradients by Hamiltonian Neural Networks?

This project was carried out as part of the Optimization for Machine Learning course (CS-439) at EPFL in the spring 2020 semester.

Team:

The No Free Lunch Theorem suggests that there is no universally best learner and restricting the hypothesis class by introducing our prior knowledge about the task we are solving is the only way we can improve the state of affairs. This motivates the use of the learned optimizer for the given task and the use of different regularization methods. For instance, the Heavy Ball method considers the gradient descent procedure as a sliding of a heavy ball on the surface of the loss function, which results in faster convergence. More generally, one can consider the gradient descent procedure as a movement of some object on the surface of the loss function under different forces: potential, dissipative (friction) and other external forces. Such a physical process can be described by port-Hamiltonian system of equations. In this work, we propose to learn the optimizer and impose the physical laws governed by the port-Hamiltonian system of equations into the optimization algorithm to provide implicit bias which acts as regularization and helps to find the better generalization optimums. We impose physical structure by learning the gradients of the parameters: gradients are the solutions of the port-Hamiltonian system, thus their dynamics is governed by the physical laws, that are going to be learned.

To summarize, we propose a new framework based on Hamiltonian Neural Networks which is used to learn and improve gradients for the gradient descent step. Our experiments on an artificial task and MNIST dataset demonstrate that our method is able to outperform many basic optimizers and achieve comparable performance to the previous LSTM-based one. Furthermore, we explore how methods can be transferred to other architectures with different hyper-parameters, e.g. activation functions. To this end, we train HNN-based optimizer for a small neural network with the sigmoid activation on MNIST dataset and then train the same network but with the ReLU activation using the already trained optimizer. The results show that our method is transferable in this case unlike the LSTM-based optimizer.

To test optimizers we use the following tasks:

  • Quadratic functions (details are given in main.ipynb)
  • MNIST

Prerequisites

  • Ubuntu
  • Python 3
  • NVIDIA GPU

Installation

  • Clone this repo:
git clone https://github.com/AfoninAndrei/OPT-ML.git
cd OPT-ML
  • Install dependencies:
pip install requirements.txt

Usage

  • To reproduce the results: simply go through main.ipynb. Or run it on Colab
  • All implementations are in src.

Method

In fact, gradient descent is fundamentally a sequence of updates (from the output layer of the neural net back to the input), in between which a state must be stored. Thus we can think of an optimizer as a simple feedforward network (or RNN, etc.) that gives us nest update each iteration. The loss of the optimizer is the sum (weights are set to 1 in our experiments) of the losses of the optimizee as it learns.

The plan is thus to use gradient descent on parameters of model-based optimizers in order to minimize this loss, which should give us an optimizer that is capable of optimizing efficiently.

As the paper mentions, it is important that the gradients in dashed lines in the figure below are not propagated during gradient descent.

Basically this is nothing we wouldn't expect: the loss of the optimizer neural net is simply the average training loss of the optimizee as it is trained by the optimizer. The optimizer takes in the gradient of the current coordinate of the optimizee as well as its previous state, and outputs a suggested update that we hope will reduce the optimizee's loss as fast as possible.

Optimization is done coordinatewise such that to optimize each parameter by its own state. Any momentum or energy term used in the optimization is based on each parameter's own history, independent on others. Each parameter's optimization state is not shared across other coordinates.

In our approach, the role of the optimizer is given to a Hamiltonian Neural Network which is presented in figure below:

Acknowledgement

The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022