Learning Neural Network Subspaces

Overview

Learning Neural Network Subspaces

Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin, Ali Farhadi, Mohammad Rastegari.

Figure1

Abstract

Recent observations have advanced our understanding of the neural network optimization landscape, revealing the existence of (1) paths of high accuracy containing diverse solutions and (2) wider minima offering improved performance. Previous methods observing diverse paths require multiple training runs. In contrast we aim to leverage both property (1) and (2) with a single method and in a single training run. With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks. These neural network subspaces contain diverse solutions that can be ensembled, approaching the ensemble performance of independently trained networks without the training cost. Moreover, using the subspace midpoint boosts accuracy, calibration, and robustness to label noise, outperforming Stochastic Weight Averaging.

Code Overview

In this repository we walk through learning neural network subspaces with PyTorch. We will ground the discussion with learning a line of neural networks. In our code, a line is defined by endpoints weight and weight1 and a point on the line is given by w = (1 - alpha) * weight + alpha * weight1 for some alpha in [0,1].

Algorithm 1 (see paper) works as follows:

  1. weight and weight1 are initialized independently.
  2. For each batch data, targets, alpha is chosen uniformly from [0,1] and the weights w = (1 - alpha) * weight + alpha * weight1 are used in the forward pass.
  3. The regularization term is computed (see Eq. 3).
  4. With loss.backward() and optimizer.step() the endpoints weight and weight1 are updated.

Instead of using a regular nn.Conv2d we instead use a SubspaceConv (found in modes/modules.py).

class SubspaceConv(nn.Conv2d):
    def forward(self, x):
        w = self.get_weight()
        x = F.conv2d(
            x,
            w,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
        )
        return x

For each subspace type (lines, curves, and simplexes) the function get_weight must be implemented. For lines we use:

class TwoParamConv(SubspaceConv):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.weight1 = nn.Parameter(torch.zeros_like(self.weight))

    def initialize(self, initialize_fn):
        initialize_fn(self.weight1)

class LinesConv(TwoParamConv):
    def get_weight(self):
        w = (1 - self.alpha) * self.weight + self.alpha * self.weight1
        return w

Note that the other endpoint weight is instantiated and initialized by nn.Conv2d. Also note that there is an equivalent implementation for batch norm layers also found in modes/modules.py.

Now we turn to the training logic which appears in trainers/train_one_dim_subspaces.py. In the snippet below we assume we are not training with the layerwise variant (args.layerwise = False) and we are drawing only one sample from the subspace (args.num_samples = 1).

for batch_idx, (data, target) in enumerate(train_loader):
    data, target = data.to(args.device), target.to(args.device)

    alpha = np.random.uniform(0, 1)
    for m in model.modules():
        if isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d):
            setattr(m, f"alpha", alpha)

    optimizer.zero_grad()
    output = model(data)
    loss = criterion(output, target)

All that's left is to compute the regularization term and call backward. For lines, this is given by the snippet below.

    num = 0.0
    norm = 0.0
    norm1 = 0.0
    for m in model.modules():
        if isinstance(m, nn.Conv2d):
            num += (self.weight * self.weight1).sum()
            norm += self.weight.pow(2).sum()
            norm1 += self.weight1.pow(2).sum()
    loss += args.beta * (num.pow(2) / (norm * norm1))

    loss.backward()

    optimizer.step()

Training Lines, Curves, and Simplexes

We now walkthrough generating the plots in Figures 4 and 5 of the paper. Before running code please install PyTorch and Tensorboard (for making plots you will also need tex on your computer). Note that this repository differs from that used to generate the figures in the paper, as the latter leveraged Apple's internal tools. Accordingly there may be some bugs and we encourage you to submit an issue or send an email if you run into any problems.

In this example walkthrough we consider TinyImageNet, which we download to ~/data using a script such as this. To run standard training and ensemble the trained models, use the following command:

python experiment_configs/tinyimagenet/ensembles/train_ensemble_members.py
python experiment_configs/tinyimagenet/ensembles/eval_ensembles.py

Note that if your data is not in ~/data please change the paths in these experiment configs. Logs and checkpoints be saved in learning-subspaces-results, although this path can also be changed.

For one dimensional subspaces, use the following command to train:

python experiment_configs/tinyimagenet/one_dimensional_subspaces/train_lines.py
python experiment_configs/tinyimagenet/one_dimensional_subspaces/train_lines_layerwise.py
python experiment_configs/tinyimagenet/one_dimensional_subspaces/train_curves.py

To evaluate (i.e. generate the data for Figure 4) use:

python experiment_configs/tinyimagenet/one_dimensional_subspaces/eval_lines.py
python experiment_configs/tinyimagenet/one_dimensional_subspaces/eval_lines_layerwise.py
python experiment_configs/tinyimagenet/one_dimensional_subspaces/eval_curves.py

We recommend looking at the experiment config files before running, which can be modified to change the type of model, number of random seeds. The default in these configs is 2 random seeds.

Analogously, to train simplexes use:

python experiment_configs/tinyimagenet/simplexes/train_simplexes.py
python experiment_configs/tinyimagenet/simplexes/train_simplexes_layerwise.py

For generating plots like those in Figure 4 and 5 use:

python analyze_results/tinyimagenet/one_dimensional_subspaces.py
python analyze_results/tinyimagenet/simplexes.py

Equivalent configs exist for other datasets, and the configs can be modified to add label noise, experiment with other models, and more. Also, if there is any functionality missing from this repository that you would like please also submit an issue.

Bibtex

@article{wortsman2021learning,
  title={Learning Neural Network Subspaces},
  author={Wortsman, Mitchell and Horton, Maxwell and Guestrin, Carlos and Farhadi, Ali and Rastegari, Mohammad},
  journal={arXiv preprint arXiv:2102.10472},
  year={2021}
}
Owner
Apple
Apple
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022