SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

Overview

SelfAugment

Paper

@misc{reed2020selfaugment,
      title={SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning}, 
      author={Colorado Reed and Sean Metzger and Aravind Srinivas and Trevor Darrell and Kurt Keutzer},
      year={2020},
      eprint={2009.07724},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Using your own dataset.

To interface your own dataset, make sure that you carefully check the three main scripts to incorporate your dataset:

  1. main_moco.py
  2. main_lincls.py
  3. faa.py

Some things to check:

  1. Ensure that the sizing for your dataset is right. If your images are 32x32 (e.g. CIFAR10) - you should ensure that you are using the CIFAR10 style model, which uses a 3x3 input conv, and resizes images to be 28x28 instead of 224x224 (e.g. for ImageNet). This can make a big difference!
  2. If you want selfaugment to run quickly, consider using a small subset of your full dataset. For example, for ImageNet, we only use a small subset of the data - 50,000 random images. This may mean that you need to run unsupervised pretraining for longer than you usually do. We usually scale the number of epochs MoCov2 runs so that the number of total iterations is the same, or a bit smaller, for the subset and the full dataset.

Base augmentation.

If you want to find the base augmentation, then use slm_utils/submit_single_augmentations.py

This will result in 16 models, each with the results of self supervised training using ONLY the augmentation provided. slm_utils/submit_single_augmentations is currently using imagenet, so it uses a subset for this part.

Then you will need to train rotation classifiers for each model. this can be done using main_lincls.py

Train 5 Folds of MoCov2 on the folds of your data.

To get started, train 5 moco models using only the base augmentation. To do this, you can run python slm_utils/submit_moco_folds.py.

Run SelfAug

Now, you must run SelfAug on your dataset. Note - some changes in dataloaders may be necessary depending on your dataset.

@Colorado, working on making this process cleaner.

For now, you will need to go into faa_search_single_aug_minmax_w.py, and edit the config there. I will change this to argparse here soon. The most critical part of this is entering your checkpoint names in order of each fold under config.checkpoints.

Loss can be rotation, icl, icl_and_rotation. If you are doing icl_and_rotation, then you will need to normalize the loss_weights in loss_weight dict so that each loss is 1/(avg loss across k-folds) for each type of loss, I would just use the loss that was in wandb (rot train loss, and ICL loss from pretraining). Finally, you are trying to maximize negative loss with Ray, so a negative weighting in the loss weights means that the loss with that weight will be maximized.

Retrain using new augmentations found by SelfAug.

Just make sure to change the augmentation path to the pickle file with your new augmentations in load_policies function in get_faa_transforms.py Then, submit the job using slm_utils/submit_faa_moco.py

Owner
Colorado Reed
CS PhD student at Berkeley
Colorado Reed
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022