A testcase generation tool for Persistent Memory Programs.

Overview

PMFuzz

PMFuzz

PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck)

If you find PMFuzz useful in your research, please cite:

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan
PMFuzz: Test Case Generation for Persistent Memory Programs
The International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2021

BibTex

@inproceedings{liu2021pmfuzz,
  title={PMFuzz: Test Case Generation for Persistent Memory Programs},
  author={Liu, Sihang and Mahar, Suyash and Ray, Baishakhi and Khan, Samira},
  booktitle={Proceedings of the Twenty-sixth International Conference on Architectural Support for Programming Languages and Operating Systems},
  year={2021}
}

Dependencies

PMFuzz was tested using the following environment configuration, other versions may work:

  1. Ubuntu 18.04
  2. NDCTL v64 or higher
  3. libunwind (libunwind-dev)
  4. libini-config (libini-config-dev)
  5. Python 3.8
  6. GNUMake >= 3.82
  7. Kernel version 5.4
  8. Anaconda or virtualenv (recommended)

For compiling documentation:

  1. doxygen
  2. pdflatex
  3. doxypypy

Compiling PMFuzz

Build PMFuzz and AFL

make -j $(nproc --all)

Install PMFuzz

sudo make install

Now, pmfuzz-fuzz should be available as an executable:

pmfuzz-fuzz --help

The following man pages are also installed:

man 1 pmfuzz-fuzz
man 7 libpmfuzz
man 7 libfakepmfuzz

To uninstall PMFuzz, run the following command:

sudo make uninstall

Compiling PMFuzz Docker image

PMFuzz also comes with a docker file to automatically configure and install pmfuzz. To build the image, run the following command from the root of the repository:

docker build -t pmfuzz-v0.9 .

The raw dockerfile is also available here: /Dockerfile.

Using PMFuzz

After installing PMFuzz, use annotations by including the PMFuzz header file:

#include "pmfuzz/pmfuzz.h"

int main() {
	printf("PMFuzz version: %s\n", pmfuzz_version_str);
}

The program would then have to be linked with either libpmfuzz or libfakepmfuzz. e.g.,

example: example.o
	$(CXX) -o $@ $< -lfakepmfuzz # or -lpmfuzz

To compile a program linked with libpmfuzz, you'd need to use PMFuzz's AFL++ version of gcc/clang. Check build/bin after building PMFuzz.

For debugging, libfakepmfuzz exports the same interface but no actual tracking mechanism, allowing it to compile with any C/C++ compiler.

An example program is available in src/example. The original ASPLOS 2021 artifact is available at https://github.com/Systems-ShiftLab/pmfuzz_asplos21_ae.

libpmfuzz API is available at docs/libpmfuzz.7.md

Compiling Documentation

Run make docs from the root, and all the documentation will be linked in the docs/ directory.

Some man pages are available as markdown formatted files:

  1. docs/libpmfuzz.7.md
  2. docs/pmfuzz-fuzz.1.md

Running custom configuration

PMFuzz uses a YML based configuration to set different parameters for fuzzing, to write a custom configuration, please follow one of the existing examples in src/pmfuzz/configs/examples/ directory.

More information on PMFuzz's syntax is here.

Modifying PMFuzz

PMFuzz was written in a modular way allowing part of PMFuzz's components to be swapped with something that has the same interface. If you have a question please open a new issue or a discussion.

Other useful information

Env variables

NOTE: If a variable doesn't have a possible value next to it, that variable would be enabled by setting it to any non-empty value (including 0).

  1. USE_FAKE_MMAP=(0,1): Enables fake mmap which mounts an image in the volaile memory.
  2. PMEM_MMAP_HINT=<addr>: Address of the mount point of the pool.
  3. ENABLE_CNST_IMG=(0,1): Disables default PMDK's behaviour that generates non-identical images for same input.
  4. FI_MODE=(<empty or unset>|IMG_GEN|IMG_REP): See libpmfuzz.c
  5. FAILURE_LIST=<path-to-output-file>: See libpmfuzz.c
  6. PMFUZZ_DEBUG=(0,1): Enables debug output from libpmfuzz
  7. ENABLE_PM_PATH: Enables deep paths in PMFuzz
  8. GEN_ALL_CS: Partially disables the probabilistic generation of crash sites and more of them are generated from libpmfuzz.c
  9. IMG_CREAT_FINJ: Disables the probabilistic generation of crash sites and all of them are generated from libpmfuzz.c
  10. PMFUZZ_SKIP_TC_CHECK: Disable testcase size check in AFL++
  11. PRIMITIVE_BASELINE_MODE: Makes workload delete image on start if the pool exists

Adding git hook for development

Following command adds a pre-commit hook to check if the tests pass:

git config --local core.hooksPath .githooks/

Reasons for Common errors

1. FileNotFoundError for instance's pid file

Raised when AFL cannot bind to a free core or no core is free.

2. Random tar command failed

Check if no free disk space is left on the device

3. shmget (2): No space left on device

Run:

ipcrm -a

Warning: This removes all user owned shared memory segments, don't run with superuser privilege or on a machine with other critical applications running.

Licensing

PMFuzz is licensed under BSD-3-clause except noted otherwise.

PMFuzz uses of the following open-source software:

  1. Preeny (license)
    Preeny was modified to fix a bug in desock. All changes are contained in vendor/pathes/preeny_path
  2. AFL++ (license)
    AFL++ was modified to include support for persistent memory tracking for PMFuzz.
Owner
Systems Research at ShiftLab
Systems Research at ShiftLab
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022