The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

Overview

OverlapTransformer

The code for our paper submitted to RAL/IROS 2022:

OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition. PDF

OverlapTransformer is a novel lightweight neural network exploiting the LiDAR range images to achieve fast execution with less than 4 ms per frame using python, less than 2 ms per frame using C++ in LiDAR similarity estimation. It is a newer version of our previous OverlapNet, which is faster and more accurate in LiDAR-based loop closure detection and place recognition.

Developed by Junyi Ma, Xieyuanli Chen and Jun Zhang.

Haomo Dataset

Fig. 1 An online demo for finding the top1 candidate with OverlapTransformer on sequence 1-1 (database) and 1-3 (query) of Haomo Dataset.

Fig. 2 Haomo Dataset which is collected by HAOMO.AI.

More details of Haomo Dataset can be found in dataset description (link).

Table of Contents

  1. Introduction and Haomo Dataset
  2. Publication
  3. Dependencies
  4. How to use
  5. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper (PDF):

@article{ma2022arxiv, 
	author = {Junyi Ma and Jun Zhang and Jintao Xu and Rui Ai and Weihao Gu and Cyrill Stachniss and Xieyuanli Chen},
	title  = {{OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition}},
	journal = {arXiv preprint},
	eprint = {2203.03397},
	year = {2022}
}

Dependencies

We use pytorch-gpu for neural networks.

An nvidia GPU is needed for faster retrival. OverlapTransformer is also fast enough when using the neural network on CPU.

To use a GPU, first you need to install the nvidia driver and CUDA.

  • CUDA Installation guide: link
    We use CUDA 11.3 in our work. Other versions of CUDA are also supported but you should choose the corresponding torch version in the following Torch dependences.

  • System dependencies:

    sudo apt-get update 
    sudo apt-get install -y python3-pip python3-tk
    sudo -H pip3 install --upgrade pip
  • Torch dependences:
    Following this link, you can download Torch dependences by pip:

    pip3 install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio==0.10.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

    or by conda:

    conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Other Python dependencies (may also work with different versions than mentioned in the requirements file):

    sudo -H pip3 install -r requirements.txt

How to use

We provide a training and test tutorials for KITTI sequences in this repository. The tutorials for Haomo dataset will be released together with Haomo dataset.

We recommend you follow our code and data structures as follows.

Code structure

├── config
│   ├── config_haomo.yml
│   └── config.yml
├── modules
│   ├── loss.py
│   ├── netvlad.py
│   ├── overlap_transformer_haomo.py
│   └── overlap_transformer.py
├── test
│   ├── test_haomo_topn_prepare.py
│   ├── test_haomo_topn.py
│   ├── test_kitti00_PR_prepare.py
│   ├── test_kitti00_PR.py
│   ├── test_results_haomo
│   │   └── predicted_des_L2_dis_bet_traj_forward.npz (to be generated)
│   └── test_results_kitti
│       └── predicted_des_L2_dis.npz (to be generated)
├── tools
│   ├── read_all_sets.py
│   ├── read_samples_haomo.py
│   ├── read_samples.py
│   └── utils
│       ├── gen_depth_data.py
│       ├── split_train_val.py
│       └── utils.py
├── train
│   ├── training_overlap_transformer_haomo.py
│   └── training_overlap_transformer_kitti.py
├── valid
│   └── valid_seq.py
├── visualize
│   ├── des_list.npy
│   └── viz_haomo.py
└── weights
    ├── pretrained_overlap_transformer_haomo.pth.tar
    └── pretrained_overlap_transformer.pth.tar

Dataset structure

In the file config.yaml, the parameters of data_root are described as follows:

  data_root_folder (KITTI sequences root) follows:
  ├── 00
  │   ├── depth_map
  │     ├── 000000.png
  │     ├── 000001.png
  │     ├── 000002.png
  │     ├── ...
  │   └── overlaps
  │     ├── train_set.npz
  ├── 01
  ├── 02
  ├── ...
  └── 10
  
  valid_scan_folder (KITTI sequence 02 velodyne) contains:
  ├── 000000.bin
  ├── 000001.bin
  ...

  gt_valid_folder (KITTI sequence 02 computed overlaps) contains:
  ├── 02
  │   ├── overlap_0.npy
  │   ├── overlap_10.npy
  ...

You need to download or generate the following files and put them in the right positions of the structure above:

  • You can find gt_valid_folder for sequence 02 here.
  • Since the whole KITTI sequences need a large memory, we recommend you generate range images such as 00/depth_map/000000.png by the preprocessing from Overlap_Localization or its C++ version, and we will not provide these images. Please note that in OverlapTransformer, the .png images are used instead of .npy files saved in Overlap_Localization.
  • More directly, you can generate .png range images by the script from OverlapNet updated by us.
  • overlaps folder of each sequence below data_root_folder is provided by the authors of OverlapNet here.

Quick Use

For a quick use, you could download our model pretrained on KITTI, and the following two files also should be downloaded :

Then you should modify demo1_config in the file config.yaml.

Run the demo by:

cd demo
python ./demo_compute_overlap_sim.py

You can see a query scan (000000.bin of KITTI 00) with a reprojected positive sample (000005.bin of KITTI 00) and a reprojected negative sample (000015.bin of KITTI 00), and the corresponding similarity.

Fig. 3 Demo for calculating overlap and similarity with our approach.

Training

In the file config.yaml, training_seqs are set for the KITTI sequences used for training.

You can start the training with

cd train
python ./training_overlap_transformer_kitti.py

You can resume from our pretrained model here for training.

Testing

Once a model has been trained , the performance of the network can be evaluated. Before testing, the parameters shoud be set in config.yaml

  • test_seqs: sequence number for evaluation which is "00" in our work.
  • test_weights: path of the pretrained model.
  • gt_file: path of the ground truth file provided by the author of OverlapNet, which can be downloaded here.

Therefore you can start the testing scripts as follows:

cd test
python test_kitti00_PR_prepare.py
python test_kitti00_PR.py

After you run test_kitti00_PR_prepare.py, a file named predicted_des_L2_dis.npz is generated in test_results_kitti, which is used by python test_kitti00_PR.py

For a quick test of the training and testing procedures, you could use our pretrained model.

Visualization

Visualize evaluation on KITTI 00

Firstly, to visualize evaluation on KITTI 00 with search space, the follwoing three files should be downloaded:

and modify the paths in the file config.yaml. Then

cd visualize
python viz_kitti.py

Fig. 4 Evaluation on KITTI 00 with search space from SuMa++ (a semantic LiDAR SLAM method).

Visualize evaluation on Haomo challenge 1 (after Haomo dataset is released)

We also provide a visualization demo for Haomo dataset after Haomo dataset is released (Fig. 1). Please download the descriptors of database (sequence 1-1 of Haomo dataset) firstly and then:

cd visualize
python viz_haomo.py

C++ implemention

We provide a C++ implemention of OverlapTransformer with libtorch for faster retrival.

  • Please download .pt and put it in the OT_libtorch folder.
  • Before building, make sure that PCL exists in your environment.
  • Here we use LibTorch for CUDA 11.3 (Pre-cxx11 ABI). Please modify the path of Torch_DIR in CMakeLists.txt.
  • For more details of LibTorch installation , please check this website.
    Then you can generate a descriptor of 000000.bin of KITTI 00 by
cd OT_libtorch/ws
mkdir build
cd build/
cmake ..
make -j6
./fast_ot 

You can find our C++ OT can generate a decriptor with less than 2 ms per frame.

License

Copyright 2022, Junyi Ma, Xieyuanli Chen, Jun Zhang, HAOMO.AI Technology Co., Ltd., China.

This project is free software made available under the GPL v3.0 License. For details see the LICENSE file.

Owner
HAOMO.AI
HAOMO.AI Technology Co., Ltd. (HAOMO.AI) is an artificial intelligence technology company dedicated to autonomous driving
HAOMO.AI
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022