[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Overview

Transform and Tell: Entity-Aware News Image Captioning

Teaser

This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and Tell: Entity-Aware News Image Captioning. We propose an end-to-end model which generates captions for images embedded in news articles. News images present two key challenges: they rely on real-world knowledge, especially about named entities; and they typically have linguistically rich captions that include uncommon words. We address the first challenge by associating words in the caption with faces and objects in the image, via a multi-modal, multi-head attention mechanism. We tackle the second challenge with a state-of-the-art transformer language model that uses byte-pair-encoding to generate captions as a sequence of word parts.

On the GoodNews dataset, our model outperforms the previous state of the art by a factor of four in CIDEr score (13 to 54). This performance gain comes from a unique combination of language models, word representation, image embeddings, face embeddings, object embeddings, and improvements in neural network design. We also introduce the NYTimes800k dataset which is 70% larger than GoodNews, has higher article quality, and includes the locations of images within articles as an additional contextual cue.

A live demo can be accessed here. In the demo, you can provide the URL to a New York Times article. The server will then scrape the web page, extract the article and image, and feed them into our model to generate a caption.

Please cite with the following BibTeX:

@InProceedings{Tran_2020_CVPR,
  author = {Tran, Alasdair and Mathews, Alexander and Xie, Lexing},
  title = {Transform and Tell: Entity-Aware News Image Captioning},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}

Requirements

# Install Anaconda for Python and then create a dedicated environment.
# This will make it easier to reproduce our experimental numbers.
conda env create -f environment.yml
conda activate tell

# This step is only needed if you want to use the Jupyter notebook
python -m ipykernel install --user --name tell --display-name "tell"

# Our Pytorch uses CUDA 10.2. Ensure that CUDA_HOME points to the right
# CUDA version. Chagne this depending on where you installed CUDA.
export CUDA_HOME=/usr/local/cuda-10.2

# We also pin the apex version, which is used for mixed precision training
cd libs/apex
git submodule init && git submodule update .
pip install -v --no-cache-dir --global-option="--pyprof" --global-option="--cpp_ext" --global-option="--cuda_ext" ./

# Install our package
cd ../.. && python setup.py develop

# Spacy is used to calcuate some of the evaluation metrics
spacy download en_core_web_lg

# We use nltk to tokenize the generated text to compute linguistic metrics
python -m nltk.downloader punkt

Getting Data

The quickest way to get the data is to send an email to [email protected] (where first is alasdair and last is tran) to request the MongoDB dump that contains the dataset. Alternatively, see here for instructions on how to get the data from scratch, which will take a few days.

Once we have obtained the data from the authors, which consists of two directories expt and data, you can simply put them at the root of this repo.

# If the data is download from our Cloudstor server, then you might need
# to first unzip the archives using either tar or 7z.

# First, let's start an empty local MongoDB server on port 27017. Below
# we set the cache size to 10GB of RAM. Change it depending on your system.
mkdir data/mongodb
mongod --bind_ip_all --dbpath data/mongodb --wiredTigerCacheSizeGB 10

# Next let's restore the NYTimes200k and GoodNews datasets
mongorestore --db nytimes --host=localhost --port=27017 --drop --gzip --archive=data/mongobackups/nytimes-2020-04-21.gz
mongorestore --db goodnews --host=localhost --port=27017 --drop --gzip --archive=data/mongobackups/goodnews-2020-04-21.gz

# Next we unarchive the image directories. For each dataset, you can see two
# directories: `images` and `images_processed`. The files in `images` are
# the orignal files scraped from the New York Times. You only need this
# if you want to recompute the face and object embeddings. Otherwise, all
# the experiments will use the images in `images_processed`, which have
# already been cropped and resized.
tar -zxf data/nytimes/images_processed.tar.gz -C data/nytimes/
tar -zxf data/goodnews/images_processed.tar.gz -C data/goodnews/

# We are now ready to train the models!

You can see an example of how we read the NYTimes800k samples from the MongoDB database here. Here's a minimum working example in Python:

import os
from PIL import Image
from pymongo import MongoClient

# Assume that you've already restored the database and the mongo server is running
client = MongoClient(host='localhost', port=27017)

# All of our NYTimes800k articles sit in the database `nytimes`
db = client.nytimes

# Here we select a random article in the training set.
article = db.articles.find_one({'split': 'train'})

# You can visit the original web page where this article came from
url = article['web_url']

# Each article contains a lot of fields. If you want the title, then
title = article['headline']['main'].strip()

# If you want the article text, then you will need to manually merge all
# paragraphs together.
sections = article['parsed_section']
paragraphs = []
for section in sections:
    if section['type'] == 'paragraph':
        paragraphs.append(section['text'])
article_text = '\n'.join(paragraphs)

# To get the caption of the first image in the article
pos = article['image_positions'][0]
caption = sections[pos]['text'].strip()

# If you want to load the actual image into memory
image_dir = 'data/nytimes/images_processed' # change this accordingly
image_path = os.path.join(image_dir, f"{sections[pos]['hash']}.jpg")
image = Image.open(image_path)

# You can also load the pre-computed FaceNet embeddings of the faces in the image
facenet_embeds = sections[pos]['facenet_details']['embeddings']

# Object embeddings are stored in a separate collection due to a size limit in mongo
obj = db.objects.find_one({'_id': sections[pos]['hash']})
object_embeds = obj['object_features']

Training and Evaluation

# Train the full model on NYTimes800k. This takes around 4 days on a Titan V GPU.
# The training will populate the directory expt/nytimes/9_transformer_objects/serialization
CUDA_VISIBLE_DEVICES=0 tell train expt/nytimes/9_transformer_objects/config.yaml -f

# Once training is finished, the best model weights are stored in
#   expt/nytimes/9_transformer_objects/serialization/best.th
# We can use this to generate captions on the NYTimes800k test set. This
# takes about one hour.
CUDA_VISIBLE_DEVICES=0 tell evaluate expt/nytimes/9_transformer_objects/config.yaml -m expt/nytimes/9_transformer_objects/serialization/best.th

# Compute the evaluation metrics on the test set
python scripts/compute_metrics.py -c data/nytimes/name_counters.pkl expt/nytimes/9_transformer_objects/serialization/generations.jsonl

There are also other model variants which are ablation studies. Check our paper for more details, but here's a summary:

Experiment Word Embedding Language Model Image Attention Weighted RoBERTa Location-Aware Face Attention Object Attention
1_lstm_glove GloVe LSTM
2_transformer_glove GloVe Transformer
3_lstm_roberta RoBERTa LSTM
4_no_image RoBERTa Transformer
5_transformer_roberta RoBERTa Transformer
6_transformer_weighted_roberta RoBERTa Transformer
7_trasnformer_location_aware RoBERTa Transformer
8_transformer_faces RoBERTa Transformer
9_transformer_objects RoBERTa Transformer

Acknowledgement

Owner
Alasdair Tran
Just another collection of fermions and bosons.
Alasdair Tran
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022