StarGAN2 for practice

Overview

StarGAN2 for practice

This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. At least, this is what I use nearly daily myself.
Here are few pieces, made with it: Terminal Blink, Occurro, etc.
Tested on Pytorch 1.4-1.8. Sequence-to-video conversions require FFMPEG. For more explicit details refer to the original implementation.

Features

  • streamlined workflow, focused on practical tasks [TBA]
  • cleaned up and simplified code for better readability
  • stricter memory management to fit bigger batches on consumer GPUs
  • models mixing (SWA) for better stability

NB: In the meantime here's only training code and some basic inference (processing). More various methods & use cases may be added later.

Presumed file structure

stargan2 root
├  _in input data for processing
├  _out generation output (sequences & videos)
├  data datasets for training
│  └  afhq [example] some dataset
│     ├  cats [example] images for training
│     │  └  test [example] images for validation
│     ├  dogs [example] images for training
│     │  └  test [example] images for validation
│     └  ⋯
├  models trained models for inference/processing
│  └  afhq-256-5-100.pkl [example] trained model file
├  src source code
└  train training folders
   └  afhq.. [example] auto-created training folder

Training

  • Prepare your multi-domain dataset as shown above. Main directory should contain folders with images of different domains (e.g. cats, dogs, ..); every such folder must contain test subfolder with validation subset. Such structure allows easy data recombination for experiments. The images may be of any sizes (they'll be randomly cropped during training), but not smaller than img_size specified for training (default is 256).

  • Train StarGAN2 on the prepared dataset (e.g. afhq):

 python src/train.py --data_dir data/afhq --model_dir train/afhq --img_size 256 --batch 8

This will run training process, according to the settings in src/train.py (check and explore those!). Models are saved under train/afhq and named as dataset-size-domaincount-kimgs, e.g. afhq-256-5-100.ckpt (required for resuming).

  • Resume training on the same dataset from the iteration 50 (thousands), presuming there's corresponding complete 3-models set (with nets and optims) in train/afhq:
 python src/train.py --data_dir data/afhq --model_dir train/afhq --img_size 256 --batch 8 --resume 50
  • Make an averaged model (only for generation) from the directory of those, e.g. train/select:
 python src/swa.py -i train/select 

Few personal findings

  1. Batch size is crucial for this network! Official settings are batch=8 for size 256, if you have large GPU RAM. One can fit batch 3 or 4 on 11gb GPU; those results are interesting, but less impressive. Batches of 2 or 1 are for the brave only.. Size is better kept as 256; the network has auto-scaling layer count, but I didn't manage to get comparable results for size 512 with batches up to 7 (max for 32gb).
  2. Model weights may seriously oscillate during training, especially for small batches (typical for Cycle- or Star- GANs), so it's better to save models frequently (there may be jewels). The best selected models can be mixed together with swa.py script for better stability. By default, Generator network is saved every 1000 iterations, and the full set - every 5000 iterations. 100k iterations (few days on a single GPU) may be enough; 200-250k would give pretty nice overfit.
  3. Lambda coefficients lambda_ds (diversity), lambda_cyc (reconstruction) and lambda_sty (style) may be increased for smaller batches, especially if the goal is stylization, rather than photo-realistic transformation. The videos above, for instance, were made with these lambdas equal 3. The reference-based generation is nearly lost with such settings, but latent-based one can make nice art.
  4. The order of domains in the training set matters a lot! I usually put some photos first (as it will be the main source imagery), and the closest to photoreal as second; but other approaches may go well too (and your mileage may vary).
  5. I particularly love this network for its' failures. Even the flawed results (when the batches are small, the lambdas are wrong, etc.) are usually highly expressive and "inventive", just the kind of "AI own art", which is so spoken about. Experimenting with such aesthetics is a great fun.

Generation

  • Transform image test.jpg with AFHQ model (can be downloaded here):
python src/test.py --source test.jpg --model models/100000_nets_ema.ckpt

This will produce 3 images (one per trained domain in the model) in the _out directory.
If source is a directory, every image in it will be processed accordingly.

  • Generate output for the domain(s), referenced by number(s):
python src/test.py --source test.jpg --model models/100000_nets_ema.ckpt --ref 2
  • Generate output with reference image for domain 1 (ref filename must start with that number):
python src/test.py --source test.jpg --model models/100000_nets_ema.ckpt --ref 1-ref.jpg

To be continued..

Credits

StarGAN2
Copyright © 2020, NAVER Corp. All rights reserved.
Made available under Creative Commons BY-NC 4.0 license.
Original paper: https://arxiv.org/abs/1912.01865

Owner
vadim epstein
vadim epstein
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021