StarGAN2 for practice

Overview

StarGAN2 for practice

This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. At least, this is what I use nearly daily myself.
Here are few pieces, made with it: Terminal Blink, Occurro, etc.
Tested on Pytorch 1.4-1.8. Sequence-to-video conversions require FFMPEG. For more explicit details refer to the original implementation.

Features

  • streamlined workflow, focused on practical tasks [TBA]
  • cleaned up and simplified code for better readability
  • stricter memory management to fit bigger batches on consumer GPUs
  • models mixing (SWA) for better stability

NB: In the meantime here's only training code and some basic inference (processing). More various methods & use cases may be added later.

Presumed file structure

stargan2 root
├  _in input data for processing
├  _out generation output (sequences & videos)
├  data datasets for training
│  └  afhq [example] some dataset
│     ├  cats [example] images for training
│     │  └  test [example] images for validation
│     ├  dogs [example] images for training
│     │  └  test [example] images for validation
│     └  ⋯
├  models trained models for inference/processing
│  └  afhq-256-5-100.pkl [example] trained model file
├  src source code
└  train training folders
   └  afhq.. [example] auto-created training folder

Training

  • Prepare your multi-domain dataset as shown above. Main directory should contain folders with images of different domains (e.g. cats, dogs, ..); every such folder must contain test subfolder with validation subset. Such structure allows easy data recombination for experiments. The images may be of any sizes (they'll be randomly cropped during training), but not smaller than img_size specified for training (default is 256).

  • Train StarGAN2 on the prepared dataset (e.g. afhq):

 python src/train.py --data_dir data/afhq --model_dir train/afhq --img_size 256 --batch 8

This will run training process, according to the settings in src/train.py (check and explore those!). Models are saved under train/afhq and named as dataset-size-domaincount-kimgs, e.g. afhq-256-5-100.ckpt (required for resuming).

  • Resume training on the same dataset from the iteration 50 (thousands), presuming there's corresponding complete 3-models set (with nets and optims) in train/afhq:
 python src/train.py --data_dir data/afhq --model_dir train/afhq --img_size 256 --batch 8 --resume 50
  • Make an averaged model (only for generation) from the directory of those, e.g. train/select:
 python src/swa.py -i train/select 

Few personal findings

  1. Batch size is crucial for this network! Official settings are batch=8 for size 256, if you have large GPU RAM. One can fit batch 3 or 4 on 11gb GPU; those results are interesting, but less impressive. Batches of 2 or 1 are for the brave only.. Size is better kept as 256; the network has auto-scaling layer count, but I didn't manage to get comparable results for size 512 with batches up to 7 (max for 32gb).
  2. Model weights may seriously oscillate during training, especially for small batches (typical for Cycle- or Star- GANs), so it's better to save models frequently (there may be jewels). The best selected models can be mixed together with swa.py script for better stability. By default, Generator network is saved every 1000 iterations, and the full set - every 5000 iterations. 100k iterations (few days on a single GPU) may be enough; 200-250k would give pretty nice overfit.
  3. Lambda coefficients lambda_ds (diversity), lambda_cyc (reconstruction) and lambda_sty (style) may be increased for smaller batches, especially if the goal is stylization, rather than photo-realistic transformation. The videos above, for instance, were made with these lambdas equal 3. The reference-based generation is nearly lost with such settings, but latent-based one can make nice art.
  4. The order of domains in the training set matters a lot! I usually put some photos first (as it will be the main source imagery), and the closest to photoreal as second; but other approaches may go well too (and your mileage may vary).
  5. I particularly love this network for its' failures. Even the flawed results (when the batches are small, the lambdas are wrong, etc.) are usually highly expressive and "inventive", just the kind of "AI own art", which is so spoken about. Experimenting with such aesthetics is a great fun.

Generation

  • Transform image test.jpg with AFHQ model (can be downloaded here):
python src/test.py --source test.jpg --model models/100000_nets_ema.ckpt

This will produce 3 images (one per trained domain in the model) in the _out directory.
If source is a directory, every image in it will be processed accordingly.

  • Generate output for the domain(s), referenced by number(s):
python src/test.py --source test.jpg --model models/100000_nets_ema.ckpt --ref 2
  • Generate output with reference image for domain 1 (ref filename must start with that number):
python src/test.py --source test.jpg --model models/100000_nets_ema.ckpt --ref 1-ref.jpg

To be continued..

Credits

StarGAN2
Copyright © 2020, NAVER Corp. All rights reserved.
Made available under Creative Commons BY-NC 4.0 license.
Original paper: https://arxiv.org/abs/1912.01865

Owner
vadim epstein
vadim epstein
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022