A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

Overview

TaichiSLAM

This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm.

Intro

Taichi is an efficient domain-specific language (DSL) designed for computer graphics (CG), which can be adopted for high-performance computing on mobile devices. Thanks to the connection between CG and robotics, we can adopt this powerful tool to accelerate the development of robotics algorithms.

In this project, I am trying to take advantages of Taichi, including parallel optimization, sparse computing, advanced data structures and CUDA acceleration. The original purpose of this project is to reproduce dense mapping papers, including Octomap, Voxblox, Voxgraph etc.

Note: This project is only backend of 3d dense mapping. For full SLAM features including real-time state estimation, pose graph optimization, depth generation, please take a look on VINS and my fisheye fork of VINS.

Demos

Octomap/Occupy map at different accuacy: drawing drawing drawing

Truncated signed distance function (TSDF): Surface reconstruct by TSDF (not refined) Occupy map and slice of original TSDF

Usage

Install taichi via pip

pip install taichi

Download taichi_three and TaichiSlAM to your dev folder and add them to PYTHONPATH

git clone https://github.com/taichi-dev/taichi_three
git clone https://github.com/xuhao1/TaichiSLAM

echo export PYTHONPATH=`pwd`/taichi_three:`pwd`/TaichiSLAM:\$PYTHONPATH >> ~/.bashrc
#Or if using zshrc
echo export PYTHONPATH=`pwd`/taichi_three:`pwd`/TaichiSLAM:\$PYTHONPATH >> ~/.zshrc

Download cow_and_lady_dataset from voxblox.

Running TaichiSLAM octomap demo

python examples/TaichiSLAM_demo.py -b ~/pathto/your/bag/cow_and_lady_dataset.bag

TSDF(Voxblox)

python examples/TaichiSLAM_demo.py -m esdf -b ~/data/voxblox/cow_and_lady_dataset.bag

Use - and = key to change accuacy. Mouse to rotate the map. -h to get more help.

usage: TaichiSLAM_demo.py [-h] [-r RESOLUTION RESOLUTION] [-m METHOD] [-c] [-t] [--rviz] [-p MAX_DISP_PARTICLES] [-b BAGPATH] [-o OCCUPY_THRES] [-s MAP_SIZE MAP_SIZE] [--blk BLK]
                          [-v VOXEL_SIZE] [-K K] [-f] [--record]

Taichi slam fast demo

optional arguments:
  -h, --help            show this help message and exit
  -r RESOLUTION RESOLUTION, --resolution RESOLUTION RESOLUTION
                        display resolution
  -m METHOD, --method METHOD
                        dense mapping method: octo/esdf
  -c, --cuda            enable cuda acceleration if applicable
  -t, --texture-enabled
                        showing the point cloud's texture
  --rviz                output to rviz
  -p MAX_DISP_PARTICLES, --max-disp-particles MAX_DISP_PARTICLES
                        max output voxels
  -b BAGPATH, --bagpath BAGPATH
                        path of bag
  -o OCCUPY_THRES, --occupy-thres OCCUPY_THRES
                        thresold for occupy
  -s MAP_SIZE MAP_SIZE, --map-size MAP_SIZE MAP_SIZE
                        size of map xy,z in meter
  --blk BLK             block size of esdf, if blk==1; then dense
  -v VOXEL_SIZE, --voxel-size VOXEL_SIZE
                        size of voxel
  -K K                  division each axis of octomap, when K>2, octomap will be K**3-map
  -f, --rendering-final
                        only rendering the final state
  --record              record to C code

Roadmap

Paper Reproduction

  • Octomap
  • Voxblox
  • Voxgraph

Features

Mapping

  • Octotree occupancy map
  • TSDF
  • Incremental ESDF
  • Submap
  • Loop Detection

MISC

  • ROS/RVIZ/rosbag interface
  • 3D occupancy map visuallizer
  • 3D TSDF/ESDF map visuallizer
  • Export to C/C++
  • Benchmark

Know issue

Memory issue on ESDF generation, debugging...

LICENSE

LGPL

Owner
XuHao
PhD student @ HKUST.UAV http://www.xuhao1.me Check my swarm projects on https://github.com/HKUST-Swarm
XuHao
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022