Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Overview

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

N|Solid

Overview

This example will show how to validate the status of our firewall before and after a software upgrade. This project will leverage JSNAPY over NETCONF RPCs.

In addition to the Ansible playbok, this project also ships with additional tools to help you along your way. You will find a Dockerfile for running the project in an isolated environment, and a Makefile for those of us that hate typing out everything all the time.

🚀 Executing the playbook

This project provides two unique methods of executing the playbook:

  1. Docker
  2. Your own Python environment

🐳 Docker

With Invoke installed on your machine

If you have invoke installed, you can use these two commands to build the container and run the playbook.

  1. build the container image with
$ invoke container
  1. run the playbook to push the network configuration changes
$ invoke ansible

Without Invoke installed on your system

  1. build the container image with
$ docker build -t registry.gitlab.com/cremsburg/juniper-automation-container:jsnapy-ospf files/docker/
  1. run the playbook to push the network configuration changes
$ docker run -it --rm \
    -v $PWD/files/:/home/tmp/files \
    -v $PWD/files/:/home/tmp/files \
    -w /home/tmp/files/ansible/ \
    registry.gitlab.com/cremsburg/juniper-automation-container:jsnapy-ospf ansible-playbook pb.jsnapy.ospf.yaml

〰️ Notes about Docker

If you are unsure if Docker is installed on your computer, then it's probably safe to suggest that it's not. If you're interested in learning more about the product, I encourage you to read a few blogs on the topic. A personal recommendation would be Digital Ocean

Some of the goodies placed in the docker folder are not relevant to our use case with Python. Feel free to delete them as you see fit, I simply wanted to share with you my Docker build process for all Juniper automation projects (including those based on Ansible). The world is your oyster and I won't judge you on whatever direction you take.

🐍 Your own Python environment

I have included a Poetry file for anyone saavy enough to take advantage. For the uninitiated, Poetry helps replicate Python environments between users with a single file. You'll need to have Poetry installed on your machine, for most users that will be solved with pip install poetry.

This is optional, I will share the methods of going with Poetry or without

  1. install Python dependencies

1a. with Poetry

$ poetry install

1b. without Poetry

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r files/docker/requirements.txt
  1. change into Ansible directory
$ cd files/ansible
  1. install official Ansible roles for Juniper devices
$ ansible-galaxy install juniper.junos
  1. run your Ansible playbook
$ ansible-playbook pb.jsnapy.ospf.yaml -i ../docker/inventory.yaml

⚠️ Running into an error about junos-eznc? ⚠️

There's an annoyance with Ansible and the way it interacts with your Python virtual environment. Do not let that frustrate you to the point that you ditch virtual environments altogether, instead use this quick technique to fix the problem.

From your terminal, find out the full path to Python within your virtual environment

$ which python
/home/cdot/.cache/pypoetry/virtualenvs/jsnapy-ospf-X7Chj_yD-py3.8/bin/python

Copy the output from your command and update the ansible.cfg file found in the same directory as the playbook. Do not update the ansible.cfg file in the root of this project, that won't accomplish anything.

add the following line to your ansible.cfg file, make sure to paste in the output of your clipboard rather than use my example

interpreter_python = /home/cdot/.cache/pypoetry/virtualenvs/jsnapy-ospf-X7Chj_yD-py3.8/bin/python

Sorry about that, one day Ansible will get it right. Until then, I recommend considering the Docker approach.

〰️ Notes about Python Virtual Environments

Similar to Docker, if you are unsure if you're using Python Virtual Environment features, it is safe to suggest that you're not. You are strongly recommended to using a Python Virtual Environment everywhere. You can really mess up your machine if you're too lazy and say "ehh, that seems like it's not important". It is. If it sounds like I'm speaking from experience, well I'll never admit to it.

If you're interested in learning more about setting up Virtual Environments, I encourage you to read a few blogs on the topic. A personal recommendation would be

📝 Dependencies

Refer to the Poetry Lock file located at poetry.lock for detailed descriptions on each package installed.

⚙️ How it works

Let's take a second to do a nice John Madden play-by-play by visiting the documentation in the files/docs/ directory.

Name Description
pb.jsnapy.ospf.rst Validate OSPF neighbors with JSNAPY

〰️ Just an FYI for Ansible AWX / Tower users

You'll note that there is an ansible.cfg file found in the root of the project's directory, as well as a folder roles/ to host the requirements.yml file.

The only purpose these serve is for Ansible Tower, which will look for these files when the project syncs from Gitlab/Github/Whatever, and Tower will auto-install the packages.

The ansible.cfg file will be the definitive for each Playbook (Template) execution, so super important to keep it here.

📸 Screenshot

pb.configure.yaml

Owner
Calvin Remsburg
Calvin Remsburg
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022