Generative Models as a Data Source for Multiview Representation Learning

Related tags

Deep LearningGenRep
Overview

GenRep

Project Page | Paper

Generative Models as a Data Source for Multiview Representation Learning
Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip Isola

Prerequisites

  • Linux
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Table of Contents:

  1. Setup
  2. Visualizations - plotting image panels, videos, and distributions
  3. Training - pipeline for training your encoder
  4. Testing - pipeline for testing/transfer learning your encoder
  5. Notebooks - some jupyter notebooks, good place to start for trying your own dataset generations
  6. Colab Demo - a colab notebook to demo how the contrastive encoder training works

Setup

  • Clone this repo:
git clone https://github.com/ali-design/GenRep
  • Install dependencies:
    • we provide a Conda environment.yml file listing the dependencies. You can create a Conda environment with the dependencies using:
conda env create -f environment.yml
  • Download resources:
    • we provide a script for downloading associated resources. Fetch these by running:
bash resources/download_resources.sh

Visualizations

Plotting contrasting images:

  • Run simclr_views_paper_figure.ipynb and supcon_views_paper_figure.ipynb to get the anchors and their contrastive pairs showin in the paper.

  • To generate more images run biggan_generate_samples_paper_figure.py.


Training encoders

  • The current implementation covers these variants:
    • Contrastive (SimCLR and SupCon)
    • Inverters
    • Classifiers
  • Some examples of commands for training contrastive encoders:
# train a SimCLR on an unconditional IGM dataset (e.g. your dataset is generated by a Gaussian walk, called my_gauss in a GANs model)
CUDA_VISIBLE_DEVICES=0,1 python main_unified.py --method SimCLR --cosine \ 
	--dataset path_to_your_dataset --walk_method my_gauss \ 
	--cache_folder your_ckpts_path >> log_train_simclr.txt &

# train a SupCon on a conditional IGM dataset (e.g. your dataset is generated by steering walks, called my_steer in a GANs model)
CUDA_VISIBLE_DEVICES=0,1 python main_unified.py --method SupCon --cosine \
	--dataset path_to_your_dataset --walk_method my_steer \ 
	--cache_folder your_ckpts_path >> log_train_supcon.txt &
  • If you want to find out more about training configurations, you can find the yml file of each pretrained models in models_pretrained

Testing encoders

  • You can currently test (i.e. trasfer learn) your encoder on:
    • ImageNet linear classification
    • PASCAL classification
    • PASCAL detection

Imagenet linear classification

Below is the command to train a linear classifier on top of the features learned

# test your unconditional or conditional IGM trained model (i.e. the encoder you trained in the previous section) on ImageNet
CUDA_VISIBLE_DEVICES=0,1 python main_linear.py --learning_rate 0.3 \ 
	--ckpt path_to_your_encoder --data_folder path_to_imagenet \
	>> log_test_your_model_name.txt &

Pascal VOC2007 classification

To test classification on PascalVOC, you will extract features from a pretrained model and run an SVM on top of the futures. You can do that running the following code:

cd transfer_classification
./run_svm_voc.sh 0 path_to_your_encoder name_experiment path_to_pascal_voc

The code is based on FAIR Self-Supervision Benchmark

Pascal VOC2007 detection

To test transfer in detection experiments do the following:

  1. Enter into transfer_detection
  2. Install detectron2, replacing the detectron2 folder.
  3. Convert the checkpoints path_to_your_encoder to detectron2 format:
python convert_ckpt.py path_to_your_encoder output_ckpt.pth
  1. Add a symlink from the PascalVOC07 and PascalVOC12 into the datasets folder.
  2. Train the detection model:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train_net.py \
      --num-gpus 8 \
      --config-file config/pascal_voc_R_50_C4_transfer.yaml \
      MODEL.WEIGHTS ckpts/${name}.pth \
      OUTPUT_DIR outputs/${name}

Notebooks

source activate genrep_env
python -m ipykernel install --user --name genrep_env

Colab

git Acknowledgements

We thank the authors of these repositories:

Citation

If you use this code for your research, please cite our paper:

@article{jahanian2021generative, 
	title={Generative Models as a Data Source for Multiview Representation Learning}, 
	author={Jahanian, Ali and Puig, Xavier and Tian, Yonglong and Isola, Phillip}, 
	journal={arXiv preprint arXiv:2106.05258}, 
	year={2021} 
}
Owner
Ali
Research scientist @ MIT.
Ali
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021