Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

Overview

UnRigidFlow

This is the official PyTorch implementation of UnRigidFlow (IJCAI2019).

Here are two sample results (~10MB gif for each) of our unsupervised models.

KITTI 15 Cityscapes
kitti cityscapes

If you find this repo useful in your research, please consider citing:

@inproceedings{Liu:2019:unrigid, 
title = {Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity}, 
author = {Liang Liu, Guangyao Zhai, Wenlong Ye, Yong Liu}, 
booktitle = {International Joint Conference on Artificial Intelligence, IJCAI}, 
year = {2019}
}

Requirements

This codebase was developed and tested with Python 3.5, Pytorch>=0.4.1, OpenCV 3.4, CUDA 9.0 and Ubuntu 16.04.

Most of the python packages can be installed by

pip3 install -r requirements.txt

In addition, Optimized correlation with CUDA kernel should be compiled manually with:

cd <correlation_package>
python3 setup.py install

and add <correlation_package> to $PYTHONPATH.

Note that if you are use PyTorch >= 1.0, you should make some changes, see NVIDIA/flownet2-pytorch#98.

Just replace #include <torch/torch.h> with #include <torch/extension.h> , adding #include <ATen/cuda/CUDAContext.h> and then replacing all at::globalContext().getCurrentCUDAStream() with at::cuda::getCurrentCUDAStream().

Training and Evaluation

We are mainly focused on KITTI benchmark. You will need to download all of the KITTI raw data and calibration files to train the model. You will also need the training files of KITTI 2012 and KITTI 2015 with calibration files [1], [2] for validating the models.

The complete training contains 3 steps:

  1. Train the flow model separately:

    python3 train.py -c configs/KITTI_flow.json
    
  2. Train the depth model separately:

    python3 train.py -c configs/KITTI_depth_stereo.json
    
  3. Train the flow and depth models jointly:

    python3 train.py -c configs/KITTI_rigid_flow_stereo.json
    

For evaluation, just adding --e options and modifying the corresponding model path for the above commands.

Pre-trained Models

You can download our pre-trained models, we provide the models as follow:

  • KITTI_flow: The separately trained optical flow network on KITTI raw data (from scratch)
  • KITTI_stereo_depth: The stereo depth network on KITTI raw data.
  • KITTI_flow_joint: The optical flow network jointly trained with stereo depth on KITTI raw data.

Acknowledgement

This repository refers some snippets from several great work, including PWC-Net, monodepth, UnFlow, UnDepthFlow, DF-Net. Although most of these are TensorFlow implementations, we are grateful for the sharing of these works, which save us a lot of time.

Owner
Liang Liu
Liang Liu
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022