Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

Overview

UnRigidFlow

This is the official PyTorch implementation of UnRigidFlow (IJCAI2019).

Here are two sample results (~10MB gif for each) of our unsupervised models.

KITTI 15 Cityscapes
kitti cityscapes

If you find this repo useful in your research, please consider citing:

@inproceedings{Liu:2019:unrigid, 
title = {Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity}, 
author = {Liang Liu, Guangyao Zhai, Wenlong Ye, Yong Liu}, 
booktitle = {International Joint Conference on Artificial Intelligence, IJCAI}, 
year = {2019}
}

Requirements

This codebase was developed and tested with Python 3.5, Pytorch>=0.4.1, OpenCV 3.4, CUDA 9.0 and Ubuntu 16.04.

Most of the python packages can be installed by

pip3 install -r requirements.txt

In addition, Optimized correlation with CUDA kernel should be compiled manually with:

cd <correlation_package>
python3 setup.py install

and add <correlation_package> to $PYTHONPATH.

Note that if you are use PyTorch >= 1.0, you should make some changes, see NVIDIA/flownet2-pytorch#98.

Just replace #include <torch/torch.h> with #include <torch/extension.h> , adding #include <ATen/cuda/CUDAContext.h> and then replacing all at::globalContext().getCurrentCUDAStream() with at::cuda::getCurrentCUDAStream().

Training and Evaluation

We are mainly focused on KITTI benchmark. You will need to download all of the KITTI raw data and calibration files to train the model. You will also need the training files of KITTI 2012 and KITTI 2015 with calibration files [1], [2] for validating the models.

The complete training contains 3 steps:

  1. Train the flow model separately:

    python3 train.py -c configs/KITTI_flow.json
    
  2. Train the depth model separately:

    python3 train.py -c configs/KITTI_depth_stereo.json
    
  3. Train the flow and depth models jointly:

    python3 train.py -c configs/KITTI_rigid_flow_stereo.json
    

For evaluation, just adding --e options and modifying the corresponding model path for the above commands.

Pre-trained Models

You can download our pre-trained models, we provide the models as follow:

  • KITTI_flow: The separately trained optical flow network on KITTI raw data (from scratch)
  • KITTI_stereo_depth: The stereo depth network on KITTI raw data.
  • KITTI_flow_joint: The optical flow network jointly trained with stereo depth on KITTI raw data.

Acknowledgement

This repository refers some snippets from several great work, including PWC-Net, monodepth, UnFlow, UnDepthFlow, DF-Net. Although most of these are TensorFlow implementations, we are grateful for the sharing of these works, which save us a lot of time.

Owner
Liang Liu
Liang Liu
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022