Object-aware Contrastive Learning for Debiased Scene Representation

Overview

Object-aware Contrastive Learning

Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo Mo*, Hyunwoo Kang*, Kihyuk Sohn, Chun-Liang Li, and Jinwoo Shin.

Installation

Install required libraries.

pip install -r requirements.txt

Download datasets in /data (e.g., /data/COCO).

Train models

Logs will be saved in logs/{dataset}_{model}_{arch}_b{global_batch_size} directory, where global_batch_size = num_nodes * gpus * batch_size (default batch size = 64 * 4 = 256).

Step 1. Train vanilla models

Train vanilla models (change dataset and ft_datasets as cub or in9).

python pretrain.py --dataset coco --model moco --arch resnet18\
    --ft_datasets coco --batch_size 64 --max_epochs 800

Step 2. Pre-compute CAM masks

Pre-compute bounding boxes for object-aware random crop.

python inference.py --mode save_box --model moco --arch resnet18\
    --ckpt_name coco_moco_r18_b256 --dataset coco\
    --expand_res 2 --cam_iters 10 --apply_crf\
    --save_path data/boxes/coco_cam-r18.txt

Pre-compute masks for background mixup.

python inference.py --mode save_mask --model moco --arch resnet18\
    --ckpt_name in9_moco_r18_256 --dataset in9\
    --expand_res 1 --cam_iters 1\
    --save_path data/masks/in9_cam-r18

Step 3. Re-train debiased models

Train contextual debiased model with object-aware random crop.

python pretrain.py --dataset coco-box-cam-r18 --model moco --arch resnet18\
     --ft_datasets coco --batch_size 64 --max_epochs 800

Train background debiased model with background mixup.

python pretrain.py --dataset in9-mask-cam-r18 --model moco_bgmix --arch resnet18\
    --ft_datasets in9 --batch_size 64 --max_epochs 800

Evaluate models

Linear evaluation

python inference.py --mode lineval --model moco --arch resnet18\
    --ckpt_name coco_moco_r18_b256 --dataset coco

Object localization

python inference.py --mode seg --model moco --arch resnet18\
    --ckpt_name cub200_moco_r18_b256 --dataset cub200\
    --expand_res 2 --cam_iters 10 --apply_crf

Detection & Segmentation (fine-tuning)

mv detection
python convert-pretrain-to-detectron2.py coco_moco_r50.pth coco_moco_r50.pkl
python train_net.py --config-file configs/coco_R_50_C4_2x_moco.yaml --num-gpus 8\
    MODEL.WEIGHTS weights/coco_moco_r18.pkl
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022