Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Overview

GRB

PyPi Latest Release Documentation Status License

Homepage | Paper | Datasets | Leaderboard | Documentation

Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evaluation on the adversarial robustness of graph machine learning models. GRB has elaborated datasets, unified evaluation pipeline, modular coding framework, and reproducible leaderboards, which facilitate the developments of graph adversarial learning, summarizing existing progress and generating insights into future research.

Updates

Get Started

Installation

Install grb via pip:

pip install grb

Install grb via git:

git clone [email protected]:THUDM/grb.git
cd grb
pip install -e .

Preparation

GRB provides all necessary components to ensure the reproducibility of evaluation results. Get datasets from link or download them by running the following script:

cd ./scripts
sh download_dataset.sh

Get attack results (adversarial adjacency matrix and features) from link or download them by running the following script:

sh download_attack_results.sh

Get saved models (model weights) from link or download them by running the following script:

sh download_saved_models.sh

Usage of GRB Modules

Training a GML model

An example of training Graph Convolutional Network (GCN) on grb-cora dataset.

import torch  # pytorch backend
from grb.dataset import Dataset
from grb.model.torch import GCN
from grb.trainer.trainer import Trainer

# Load data
dataset = Dataset(name='grb-cora', mode='easy',
                  feat_norm='arctan')
# Build model
model = GCN(in_features=dataset.num_features,
            out_features=dataset.num_classes,
            hidden_features=[64, 64])
# Training
adam = torch.optim.Adam(model.parameters(), lr=0.01)
trainer = Trainer(dataset=dataset, optimizer=adam,
                  loss=torch.nn.functional.nll_loss)
trainer.train(model=model, n_epoch=200, dropout=0.5,
              train_mode='inductive')

Adversarial attack

An example of applying Topological Defective Graph Injection Attack (TDGIA) on trained GCN model.

from grb.attack.injection.tdgia import TDGIA

# Attack configuration
tdgia = TDGIA(lr=0.01, 
              n_epoch=10,
              n_inject_max=20, 
              n_edge_max=20,
              feat_lim_min=-0.9, 
              feat_lim_max=0.9,
              sequential_step=0.2)
# Apply attack
rst = tdgia.attack(model=model,
                   adj=dataset.adj,
                   features=dataset.features,
                   target_mask=dataset.test_mask)
# Get modified adj and features
adj_attack, features_attack = rst

GRB Evaluation

Evaluation scenario (Injection Attack)

GRB

GRB provides a unified evaluation scenario for fair comparisons between attacks and defenses. The scenario is Black-box, Evasion, Inductive, Injection. Take the case of a citation-graph classification system for example. The platform collects labeled data from previous papers and trains a GML model. When a batch of new papers are submitted, it updates the graph and uses the trained model to predict labels for them.

  • Black-box: Both the attacker and the defender have no knowledge about the applied methods each other uses.
  • Evasion: Models are already trained in trusted data (e.g. authenticated users), which are untouched by the attackers but might have natural noises. Thus, attacks will only happen during the inference phase.
  • Inductive: Models are used to classify unseen data (e.g. new users), i.e. validation or test data are unseen during training, which requires models to generalize to out of distribution data.
  • Injection: The attackers can only inject new nodes but not modify the target nodes directly. Since it is usually hard to hack into users' accounts and modify their profiles. However, it is easier to create fake accounts and connect them to existing users.

GRB Leaderboard

GRB maintains leaderboards that permits a fair comparision across various attacks and defenses. To ensure the reproducibility, we provide all necessary information including datasets, attack results, saved models, etc. Besides, all results on the leaderboards can be easily reproduced by running the following scripts (e.g. leaderboard for grb-cora dataset):

sh run_leaderboard_pipeline.sh -d grb-cora -g 0 -s ./leaderboard -n 0
Usage: run_leaderboard_pipeline.sh [-d <string>] [-g <int>] [-s <string>] [-n <int>]
Pipeline for reproducing leaderboard on the chosen dataset.
    -h      Display help message.
    -d      Choose a dataset.
    -s      Set a directory to save leaderboard files.
    -n      Choose the number of an attack from 0 to 9.
    -g      Choose a GPU device. -1 for CPU.

Submission

We welcome researchers to submit new methods including attacks, defenses, or new GML models to enrich the GRB leaderboard. For future submissions, one should follow the GRB Evaluation Rules and respect the reproducibility.

Please submit your methods via the google form GRB submission. Our team will verify the result within a week.

Requirements

  • scipy==1.5.2
  • numpy==1.19.1
  • torch==1.8.0
  • networkx==2.5
  • pandas~=1.2.3
  • cogdl~=0.3.0.post1
  • scikit-learn~=0.24.1

Citing GRB

Please cite our paper if you find GRB useful for your research:

@article{zheng2021grb,
  title={Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of Graph Machine Learning},
  author={Zheng, Qinkai and Zou, Xu and Dong, Yuxiao and Cen, Yukuo and Yin, Da and Xu, Jiarong and Yang, Yang and Tang, Jie},
  journal={Neural Information Processing Systems Track on Datasets and Benchmarks 2021},
  year={2021}
}

Contact

In case of any problem, please contact us via email: [email protected]. We also welcome researchers to join our Google Group for further discussion on the adversarial robustness of graph machine learning.

Comments
  • Issue on Duplicating Linked Nodes in PGD

    Issue on Duplicating Linked Nodes in PGD

    Hi GRB Team,

    When using the latest GRB codebase, I found an issue in your implementation of random injection. For example, in /attack/PGD.py, an array islinked is created but never used, which would lead to repeated connections and hence producing an adj_attack with fewer injected edges. May I know whether it is intended or a mistake? Thank you. 😀

    opened by LFhase 2
  • Bump numpy from 1.19.1 to 1.22.0

    Bump numpy from 1.19.1 to 1.22.0

    Bumps numpy from 1.19.1 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • release of model class codes?

    release of model class codes?

    Hi GRB team,

    I want to modify, e.g., add new layers, and fine-tune the existing robust models listed in the leaderboard. It would make things much easier if I can access these models' class codes i.e., model definitions. Wonder where I can download them?

    Thanks very much for your help! Best, Yang

    opened by songy0123 0
  • Can't reach the accuracy of leaderboard

    Can't reach the accuracy of leaderboard

    Hi, I tried to use the pipeline to reproduce the result of GRB leaderboard but can't reach the accuracy given by the paper and grb website. There is always a 2-5% gap between the paper and my experiment. Could you please provide the full code for reproducing?

    opened by jiqianwanbaichi 4
  • Import error Trainer in Train Pipeline

    Import error Trainer in Train Pipeline

    Hi,

    the following line throws an error:

    https://github.com/THUDM/grb/blob/master/pipeline/train_pipeline.py#L8

    Traceback (most recent call last):
      File "/nfs/homedirs/geisler/code/grb/pipeline/train_pipeline.py", line 8, in <module>
        from grb.utils import Trainer, Logger
    ImportError: cannot import name 'Trainer' from 'grb.utils' (/nfs/homedirs/geisler/code/grb/grb/utils/__init__.py)
    
    opened by sigeisler 1
Releases(v0.1.0)
  • v0.1.0(Aug 5, 2021)

    The first release of Graph Robustness Benchmark (GRB).

    • API based on pure PyTorch, CogDL, and DGL.
    • Include five graph datasets of different scales.
    • Support graph injection attacks (e.g., RND, FGSM, PGS, SPEIT, TDGIA).
    • Support adversarial defenses (e.g., layer normalization, adversarial training, GNNSVD, GNNGuard).
    • Provide homepage.
    • Provide leaderboards of all datasets.
    • Provide basic documentation.
    • Provide scripts for reproducing results.
    Source code(tar.gz)
    Source code(zip)
Owner
THUDM
Data Mining Research Group at Tsinghua University
THUDM
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023