git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Overview

Commonsense Knowledge Base Completion with Structural and Semantic Context

Code for the paper Commonsense Knowledge Base Completion with Structural and Semantic Context.

Bibtex

@article{malaviya2020commonsense,
  title={Commonsense Knowledge Base Completion with Structural and Semantic Context},
  author={Malaviya, Chaitanya and Bhagavatula, Chandra and Bosselut, Antoine and Choi, Yejin},
  journal={Proceedings of the 34th AAAI Conference on Artificial Intelligence},
  year={2020}
}

Requirements

  • PyTorch
  • Run pip install -r requirements.txt to install the required packages.

Dataset

The ATOMIC dataset used in this paper is available here and the ConceptNet graph is available here. For convenience, both the pre-processed version of ATOMIC and ConceptNet used in the experiments are provided at this link.

Note: The ATOMIC dataset was pre-processed to canonicalize person references and remove punctuations (described in preprocess_atomic.py.

Note: The original evaluation sets provided in the ConceptNet dataset contain correct as well as incorrect tuples for evaluating binary classification accuracy. valid.txt in data/conceptnet is the concatenation of the correct tuples from the two development sets provided in the original dataset while test.txt is the set of correct tuples from the original test set.

Training

To train a model, run the following command:

python -u src/run_kbc_subgraph.py --dataset conceptnet --evaluate-every 10 --n-layers 2 --graph-batch-size 60000 --sim_relations --bert_concat

This trains the model and saves the model under the saved_models directory.

Language Model Fine-tuning

In this work, we use representations from a BERT model fine-tuned to the language of the nodes in the knowledge graph.

The script to fine-tune BERT as a language model on the two knowledge graphs is present in the lm_finetuning/ directory. For example, here is a command to fine-tune BERT as a language model on ConceptNet:

python lm_finetuning/simple_lm_finetuning.py --train_corpus {CONCEPTNET_TRAIN_CORPUS} --bert_model bert-large-uncased --output_dir {OUTPUT_DIR}

Pre-Trained Models

We provide the fine-tuned BERT models and pre-computed BERT embeddings for both ConceptNet and ATOMIC at this link. If you unzip the downloaded file in the root directory of the repository, the training script will load the embeddings.

We also provide the pre-trained KB completion models for both datasets for ease of use. Link to Conceptnet model and ATOMIC model.

Evaluation

To evaluate a trained model, and get predictions, provide the model path to the --load_model argument and use the --eval_only argument. For example, to evaluate the pre-trained ConceptNet model provided above, use the following command:

CUDA_VISIBLE_DEVICES={GPU_ID} python src/run_kbc_subgraph.py --dataset conceptnet --sim_relations --bert_concat --use_bias --load_model {PATH_TO_PRETRAINED_MODEL} --eval_only --write_results

This will load the pre-trained model, and evaluate it on the validation and test set. The predictions are saved to ./topk_results.json.

Similarly, to evaluate the trained model on ATOMIC, use the following command:

CUDA_VISIBLE_DEVICES={GPU_ID} python src/run_kbc_subgraph.py --dataset atomic --sim_relations --use_bias --load_model {PATH_TO_PRETRAINED_MODEL} --eval_only --write_results

Please email me at [email protected] for any questions or comments.

The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021