git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Overview

Commonsense Knowledge Base Completion with Structural and Semantic Context

Code for the paper Commonsense Knowledge Base Completion with Structural and Semantic Context.

Bibtex

@article{malaviya2020commonsense,
  title={Commonsense Knowledge Base Completion with Structural and Semantic Context},
  author={Malaviya, Chaitanya and Bhagavatula, Chandra and Bosselut, Antoine and Choi, Yejin},
  journal={Proceedings of the 34th AAAI Conference on Artificial Intelligence},
  year={2020}
}

Requirements

  • PyTorch
  • Run pip install -r requirements.txt to install the required packages.

Dataset

The ATOMIC dataset used in this paper is available here and the ConceptNet graph is available here. For convenience, both the pre-processed version of ATOMIC and ConceptNet used in the experiments are provided at this link.

Note: The ATOMIC dataset was pre-processed to canonicalize person references and remove punctuations (described in preprocess_atomic.py.

Note: The original evaluation sets provided in the ConceptNet dataset contain correct as well as incorrect tuples for evaluating binary classification accuracy. valid.txt in data/conceptnet is the concatenation of the correct tuples from the two development sets provided in the original dataset while test.txt is the set of correct tuples from the original test set.

Training

To train a model, run the following command:

python -u src/run_kbc_subgraph.py --dataset conceptnet --evaluate-every 10 --n-layers 2 --graph-batch-size 60000 --sim_relations --bert_concat

This trains the model and saves the model under the saved_models directory.

Language Model Fine-tuning

In this work, we use representations from a BERT model fine-tuned to the language of the nodes in the knowledge graph.

The script to fine-tune BERT as a language model on the two knowledge graphs is present in the lm_finetuning/ directory. For example, here is a command to fine-tune BERT as a language model on ConceptNet:

python lm_finetuning/simple_lm_finetuning.py --train_corpus {CONCEPTNET_TRAIN_CORPUS} --bert_model bert-large-uncased --output_dir {OUTPUT_DIR}

Pre-Trained Models

We provide the fine-tuned BERT models and pre-computed BERT embeddings for both ConceptNet and ATOMIC at this link. If you unzip the downloaded file in the root directory of the repository, the training script will load the embeddings.

We also provide the pre-trained KB completion models for both datasets for ease of use. Link to Conceptnet model and ATOMIC model.

Evaluation

To evaluate a trained model, and get predictions, provide the model path to the --load_model argument and use the --eval_only argument. For example, to evaluate the pre-trained ConceptNet model provided above, use the following command:

CUDA_VISIBLE_DEVICES={GPU_ID} python src/run_kbc_subgraph.py --dataset conceptnet --sim_relations --bert_concat --use_bias --load_model {PATH_TO_PRETRAINED_MODEL} --eval_only --write_results

This will load the pre-trained model, and evaluate it on the validation and test set. The predictions are saved to ./topk_results.json.

Similarly, to evaluate the trained model on ATOMIC, use the following command:

CUDA_VISIBLE_DEVICES={GPU_ID} python src/run_kbc_subgraph.py --dataset atomic --sim_relations --use_bias --load_model {PATH_TO_PRETRAINED_MODEL} --eval_only --write_results

Please email me at [email protected] for any questions or comments.

VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

LinkNet This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article Lin

e-Lab 158 Nov 11, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023