git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Overview

Commonsense Knowledge Base Completion with Structural and Semantic Context

Code for the paper Commonsense Knowledge Base Completion with Structural and Semantic Context.

Bibtex

@article{malaviya2020commonsense,
  title={Commonsense Knowledge Base Completion with Structural and Semantic Context},
  author={Malaviya, Chaitanya and Bhagavatula, Chandra and Bosselut, Antoine and Choi, Yejin},
  journal={Proceedings of the 34th AAAI Conference on Artificial Intelligence},
  year={2020}
}

Requirements

  • PyTorch
  • Run pip install -r requirements.txt to install the required packages.

Dataset

The ATOMIC dataset used in this paper is available here and the ConceptNet graph is available here. For convenience, both the pre-processed version of ATOMIC and ConceptNet used in the experiments are provided at this link.

Note: The ATOMIC dataset was pre-processed to canonicalize person references and remove punctuations (described in preprocess_atomic.py.

Note: The original evaluation sets provided in the ConceptNet dataset contain correct as well as incorrect tuples for evaluating binary classification accuracy. valid.txt in data/conceptnet is the concatenation of the correct tuples from the two development sets provided in the original dataset while test.txt is the set of correct tuples from the original test set.

Training

To train a model, run the following command:

python -u src/run_kbc_subgraph.py --dataset conceptnet --evaluate-every 10 --n-layers 2 --graph-batch-size 60000 --sim_relations --bert_concat

This trains the model and saves the model under the saved_models directory.

Language Model Fine-tuning

In this work, we use representations from a BERT model fine-tuned to the language of the nodes in the knowledge graph.

The script to fine-tune BERT as a language model on the two knowledge graphs is present in the lm_finetuning/ directory. For example, here is a command to fine-tune BERT as a language model on ConceptNet:

python lm_finetuning/simple_lm_finetuning.py --train_corpus {CONCEPTNET_TRAIN_CORPUS} --bert_model bert-large-uncased --output_dir {OUTPUT_DIR}

Pre-Trained Models

We provide the fine-tuned BERT models and pre-computed BERT embeddings for both ConceptNet and ATOMIC at this link. If you unzip the downloaded file in the root directory of the repository, the training script will load the embeddings.

We also provide the pre-trained KB completion models for both datasets for ease of use. Link to Conceptnet model and ATOMIC model.

Evaluation

To evaluate a trained model, and get predictions, provide the model path to the --load_model argument and use the --eval_only argument. For example, to evaluate the pre-trained ConceptNet model provided above, use the following command:

CUDA_VISIBLE_DEVICES={GPU_ID} python src/run_kbc_subgraph.py --dataset conceptnet --sim_relations --bert_concat --use_bias --load_model {PATH_TO_PRETRAINED_MODEL} --eval_only --write_results

This will load the pre-trained model, and evaluate it on the validation and test set. The predictions are saved to ./topk_results.json.

Similarly, to evaluate the trained model on ATOMIC, use the following command:

CUDA_VISIBLE_DEVICES={GPU_ID} python src/run_kbc_subgraph.py --dataset atomic --sim_relations --use_bias --load_model {PATH_TO_PRETRAINED_MODEL} --eval_only --write_results

Please email me at [email protected] for any questions or comments.

Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
571 Dec 25, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022