LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

Related tags

Deep LearningLinkNet
Overview

LinkNet

This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation for further details.

Dependencies:

  • Torch7 : you can follow our installation step specified here
  • VideoDecoder : video decoder for torch that utilizes avcodec library.
  • Profiler : use it to calculate # of paramaters, operations and forward pass time of any network trained using torch.

Currently the network can be trained on two datasets:

Datasets Input Resolution # of classes
CamVid (cv) 768x576 11
Cityscapes (cs) 1024x512 19

To download both datasets, follow the link provided above. Both the datasets are first of all resized by the training script and if you want then you can cache this resized data using --cachepath option. In case of CamVid dataset, the available video data is first split into train/validate/test set. This is done using prepCamVid.lua file. dataDistributionCV.txt contains the detail about splitting of CamVid dataset. These things are automatically run before training of the network.

LinkNet performance on both of the above dataset:

Datasets Best IoU Best iIoU
Cityscapes 76.44 60.78
CamVid 69.10 55.83

Pretrained models and confusion matrices for both datasets can be found in the latest release.

Files/folders and their usage:

  • run.lua : main file
  • opts.lua : contains all the input options used by the tranining script
  • data : data loaders for loading datasets
  • [models] : all the model architectures are defined here
  • train.lua : loading of models and error calculation
  • test.lua : calculate testing error and save confusion matrices

There are three model files present in models folder:

  • model.lua : our LinkNet architecture
  • model-res-dec.lua : LinkNet with residual connection in each of the decoder blocks. This slightly improves the result but we had to use bilinear interpolation in residual connection because of which we were not able to run our trained model on TX1.
  • nobypass.lua : this architecture does not use any link between encoder and decoder. You can use this model to verify if connecting encoder and decoder modules actually improve performance.

A sample command to train network is given below:

th main.lua --datapath /Datasets/Cityscapes/ --cachepath /dataCache/cityscapes/ --dataset cs --model models/model.lua --save /Models/cityscapes/ --saveTrainConf --saveAll --plot

License

This software is released under a creative commons license which allows for personal and research use only. For a commercial license please contact the authors. You can view a license summary here: http://creativecommons.org/licenses/by-nc/4.0/

Comments
  • memory consuming

    memory consuming

    The model read all the dataset into the momory, this method is too memory consuming. Maybe it is better to read the dataset list and iterate the list when training .

    opened by mingminzhen 7
  • Training on camvid dataset

    Training on camvid dataset

    Hi. I can't reproduce your result on camvid dataset. What is the learning rate and number of training epoch you used in your training, is your published result on validate or test set?.

    opened by vietdoan 4
  • Torch: not enough memory (17GB)

    Torch: not enough memory (17GB)

    Hi, all

    When I run : th main.lua --datapath /data2/cityscapes_dataset/leftImg8bit/all_train_images/ --cachepath /data2/cityscapes_dataset/leftImg8bit/dataCache/ --dataset cs --model models/model.lua --save save_models/cityscapes/ --saveTrainConf --saveAll --plot

    I got "Torch: not enough memory: you tried to allocate 17GB" error (details)

    It's strange because the paper mentioned it is trained using Titan X which has 12GB memory. Why the network consumes 17GB in running?

    Any suggestion to fix this issue?

    Thanks!

    opened by amiltonwong 3
  • Fine Tuning

    Fine Tuning

    Hi,

    is there any possibility to fine-tune this model on a custom datase with different number of classes? The pre-trained weights must be exist also, as I know.

    opened by MyVanitar 3
  • Model input/output details?

    Model input/output details?

    Hi,

    I'm having a hell of a time trying to understand what the model is expecting in terms of input and output. I'm trying to use this model in an iOS project, so I need to convert the model to Apple's CoreML format.

    Image input questions:

    • For image pixel values: 0-255, 0-1, -1-1?
    • RGB or BGR?
    • Color bias?

    Prediction output:

    • Looks like the shape is # of classes, width, height?
    • Predictions are positive floats from 0-100?

    So far I'm having the best luck with these specifications:

    import torch
    from torch2coreml import convert
    from torch.utils.serialization import load_lua
    
    model = load_lua("model-cs-IoU-cpu.net")
    
    input_shape = (3, 512, 1024)
    coreml_model = convert(
            model,
            [input_shape],
            input_names=['inputImage'],
            output_names=['outputImage'],
            image_input_names=['inputImage'],
            preprocessing_args={
                'image_scale': 2/255.0
            }
        )
    coreml_model.save("/home/sean/Downloads/Final/model-cs-IoU.mlmodel")
    
    opened by seantempesta 2
  • About IoU

    About IoU

    Hi, @codeAC29
    I cannot obtain the high IoU in my training. I looked into your code and found that, the IoU is computed via averageValid. But this is actually computing the mean of class accuracy. The IoU should be the value of averageUnionValid. Do you notice the difference and obtain 76% IoU by averageUnionValid ?

    Sorry for the trouble. For convenience, I refer the definition of averageValid and averageUnionValid here.

    opened by qqning 2
  • Error while running linknet main file

    Error while running linknet main file

    Hii, I am getting this error while running main.py RuntimeError: Expected object of type torch.cuda.LongTensor but found type torch.cuda.FloatTensor for argument 2 'target'. Please help me out. Also when i try to run the trained models i am running into error. I am using pytorch to run .net files. I am not able to load them as it is showing error: name cs is not defined. It is a model. Why does it have a variable named cs(here cs represents cityscapes) in it?

    opened by Tharun98 0
  • Model fails for input size other than multiples of 32(for depth of 4)

    Model fails for input size other than multiples of 32(for depth of 4)

    Hi, If we give the input image size other than 32 multiples there is a size mismatch error when adding the output from encoder3 and decoder4. For example input image size is 1000x2000 output of encoder3 is 63x125 and decoder4 output size is 64x126. We need adjust parameters for spatialfullconvolution layer only if input image size is multiple of 2^(n+1) where n is encoder depth. For other image sizes adjust parameter depends on the image size. In this example network works if adjust parameter is zero in decoders 3 and 4. Please clarify if this network works only for 2^(n+1) sizes. Thanks.

    opened by Tharun98 1
  • How about the image resolution?

    How about the image resolution?

    Hi, I am reproducing the LinkNet. I have a doubt about the input image resolution and the output image resolution when you compute the FLOPS. I find my FLOPS and running speed are different your results reported on your paper.

    opened by ycszen 5
  • linknet  architecture

    linknet architecture

    iam trying to build linknet in caffe. Could you please help me in below qns: 1)Found that there are 5 downsampling and 6 updsampling by 2. if we have different no of up sampling and down sampling(6,5) how can we get the same output shape as input. Referred:https://arxiv.org/pdf/1707.03718.pdf 2)how many iterations you ran to get the proper results. 3)To match the encoder and decoder output shape i used crop layer before Eltwise instead of adding extra row or column. Will it make any difference?

    opened by vishnureghu007 7
  • Error while training

    Error while training

    I got the camVid dataset as specified in the in the read me file and installed video-decoder

    Ientered the following command to start training: th main.lua --datapath ./data/CamVid/ --cachepath ./dataCache/CamV/ --dataset cv --model ./models/model.lua --save ./Models/CamV/ --saveTrainConf --saveAll --plot

    And I got the following error,

    Preparing CamVid dataset for data loader Filenames and their role found in: ./misc/dataDistributionCV.txt

    Getting input images and labels for: 01TP_extract.avi /home/jayp/torch/install/bin/luajit: /home/jayp/torch/install/share/lua/5.1/trepl/init.lua:389: /home/jayp/torch/install/share/lua/5.1/trepl/init.lua:389: error loading module 'libvideo_decoder' from file '/home/jayp/torch/install/lib/lua/5.1/libvideo_decoder.so': /home/jayp/torch/install/lib/lua/5.1/libvideo_decoder.so: undefined symbol: avcodec_get_frame_defaults stack traceback: [C]: in function 'error' /home/jayp/torch/install/share/lua/5.1/trepl/init.lua:389: in function 'require' main.lua:34: in main chunk [C]: in function 'dofile' ...jayp/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:150: in main chunk

    I would really appreciate if anyone would help me with this.

    Thank You!

    opened by jay98 4
Releases(v1.0)
Owner
e-Lab
e-Lab
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022