This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Overview

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection

This is a PyTorch implementation of the LipForensics paper.

This is an Unofficially implemented codes with some Official code. I made this repo to use more conveniently.

If you want to see the Original code, You can cite this link

You should try the preprocessing, which steps are firstly getting landmarks and then cropping mouth.

Setup

Install packages

pip install -r requirements.txt

Note: we used Python version 3.8 to test this code.

Prepare data

  1. Follow the links below to download the datasets (you will be asked to fill out some forms before downloading):

  2. Extract the frames (e.g. using code in the FaceForensics++ repo.) The filenames of the frames should be as follows: 0000.png, 0001.png, ....

  3. Detect the faces and compute 68 face landmarks. For example, you can use RetinaFace and FAN for good results.

  4. Place face frames and corresponding landmarks into the appropriate directories:

    • For FaceForensics++, FaceShifter, and DeeperForensics, frames for a given video should be placed in data/datasets/Forensics/{dataset_name}/{compression}/images/{video}, where dataset_name is RealFF (real frames from FF++), Deepfakes, FaceSwap, Face2Face, NeuralTextures, FaceShifter, or DeeperForensics. dataset_name is c0, c23, or c40, corresponding to no compression, low compression, and high compression, respectively. video is the video name and should be numbered as follows: 000, 001, .... For example, the frame 0102 of real video 067 at c23 compression is found in data/datasets/Forensics/RealFF/c23/images/067/0102.png
    • For CelebDF-v2, frames for a given video should be placed in data/datasets/CelebDF/{dataset_name}/images/{video} where dataset_name is RealCelebDF, which should include all real videos from the test set, or FakeCelebDF, which should include all fake videos from the test set.
    • For DFDC, frames for a given video should be placed in data/datasets/DFDC/images (both real and fake). The video names from the test set we used in our experiments are given in data/datasets/DFDC/dfdc_all_vids.txt.

    The corresponding computed landmarks for each frame should be placed in .npy format in the directories defined by replacing images with landmarks above (e.g. for video "000", the .npy files for each frame should be placed in data/datasets/Forensics/RealFF/c23/landmarks/000).

  5. To crop the mouth region from each frame for all datasets, run

    python preprocessing/crop_mouths.py --dataset all

    This will write the mouth images into the corresponding cropped_mouths directory.

Evaluate

  • Cross-dataset generalisation (Table 2 in paper):
    1. Download the pretrained model and place into models/weights. This model has been trained on FaceForensics++ (Deepfakes, FaceSwap, Face2Face, and NeuralTextures) and is the one used to get the LipForensics video-level AUC results in Table 2 of the paper, reproduced below:

      CelebDF-v2 DFDC FaceShifter DeeperForensics
      82.4% 73.5% 97.1% 97.6%
    2. To evaluate on e.g. FaceShifter, run

      python evaluate.py --dataset FaceShifter --weights_forgery ./models/weights/lipforensics_ff.pth

Citation

If you find this repo useful for your research, please consider citing the following:

@inproceedings{haliassos2021lips,
  title={Lips Don't Lie: A Generalisable and Robust Approach To Face Forgery Detection},
  author={Haliassos, Alexandros and Vougioukas, Konstantinos and Petridis, Stavros and Pantic, Maja},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5039--5049},
  year={2021}
}
Owner
Minha Kim
@DASH-Lab on Sungkyunkwan University in Korea
Minha Kim
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022