Template repository for managing machine learning research projects built with PyTorch-Lightning

Overview

Mjolnir

Mjolnir: Thor's hammer, a divine instrument making its holder worthy of wielding lightning.

Template repository for managing machine learning research projects built with PyTorch-Lightning, using Anaconda for Python Dependencies and Sane Quality Defaults (Black, Flake, isort).

Template created by Sidd Karamcheti.


Contributing

Key section if this is a shared research project (e.g., other collaborators). Usually you should have a detailed set of instructions in CONTRIBUTING.md - Notably, before committing to the repository, make sure to set up your dev environment and pre-commit install (pre-commit install)!

Here are sample contribution guidelines (high-level):

  • Install and activate the Conda Environment using the QUICKSTART instructions below.

  • On installing new dependencies (via pip or conda), please make sure to update the environment- .yaml files via the following command (note that you need to separately create the environment-cpu.yaml file by exporting from your local development environment!):

    make serialize-env --arch=


Quickstart

Note: Replace instances of mjolnir and other instructions with instructions specific to your repository!

Clones mjolnir to the working directory, then walks through dependency setup, mostly leveraging the environment- .yaml files.

Shared Environment (for Clusters w/ Centralized Conda)

Note: The presence of this subsection depends on your setup. With the way the Stanford NLP Cluster has been set up, and the way I've set up the ILIAD Cluster, this section makes it really easy to maintain dependencies across multiple users via centralized conda environments, but YMMV.

@Sidd (or central repository maintainer) has already set up the conda environments in Stanford-NLP/ILIAD. The only necessary steps for you to take are cloning the repo, activating the appropriate environment, and running pre-commit install to start developing.

Local Development - Linux w/ GPU & CUDA 11.0

Note: Assumes that conda (Miniconda or Anaconda are both fine) is installed and on your path.

Ensure that you're using the appropriate environment- .yaml file --> if PyTorch doesn't build properly for your setup, checking the CUDA Toolkit is usually a good place to start. We have environment- .yaml files for CUDA 11.0 (and any additional CUDA Toolkit support can be added -- file an issue if necessary).

git clone https://github.com/pantheon-616/mjolnir.git
cd mjolnir
conda env create -f environments/environment-gpu.yaml  # Choose CUDA Kernel based on Hardware - by default used 11.0!
conda activate mjolnir
pre-commit install  # Important!

Local Development - CPU (Mac OS & Linux)

Note: Assumes that conda (Miniconda or Anaconda are both fine) is installed and on your path. Use the -cpu environment file.

git clone https://github.com/pantheon-616/mjolnir.git
cd mjolnir
conda env create -f environments/environment-cpu.yaml
conda activate mjolnir
pre-commit install  # Important!

Usage

This repository comes with sane defaults for black, isort, and flake8 for formatting and linting. It additionally defines a bare-bones Makefile (to be extended for your specific build/run needs) for formatting/checking, and dumping updated versions of the dependencies (after installing new modules).

Other repository-specific usage notes should go here (e.g., training models, running a saved model, running a visualization, etc.).

Repository Structure

High-level overview of repository file-tree (expand on this as you build out your project). This is meant to be brief, more detailed implementation/architectural notes should go in ARCHITECTURE.md.

  • conf - Quinine Configurations (.yaml) for various runs (used in lieu of argparse or typed-argument-parser)
  • environments - Serialized Conda Environments for both CPU and GPU (CUDA 11.0). Other architectures/CUDA toolkit environments can be added here as necessary.
  • src/ - Source Code - has all utilities for preprocessing, Lightning Model definitions, utilities.
    • preprocessing/ - Preprocessing Code (fill in details for specific project).
    • models/ - Lightning Modules (fill in details for specific project).
  • tests/ - Tests - Please test your code... just, please (more details to come).
  • train.py - Top-Level (main) entry point to repository, for training and evaluating models. Can define additional top-level scripts as necessary.
  • Makefile - Top-level Makefile (by default, supports conda serialization, and linting). Expand to your needs.
  • .flake8 - Flake8 Configuration File (Sane Defaults).
  • .pre-commit-config.yaml - Pre-Commit Configuration File (Sane Defaults).
  • pyproject.toml - Black and isort Configuration File (Sane Defaults).
  • ARCHITECTURE.md - Write up of repository architecture/design choices, how to extend and re-work for different applications.
  • CONTRIBUTING.md - Detailed instructions for contributing to the repository, in furtherance of the default instructions above.
  • README.md - You are here!
  • LICENSE - By default, research code is made available under the MIT License. Change as you see fit, but think deeply about why!

Start-Up (from Scratch)

Use these commands if you're starting a repository from scratch (this shouldn't be necessary for your collaborators , since you'll be setting things up, but I like to keep this in the README in case things break in the future). Generally, if you're just trying to run/use this code, look at the Quickstart section above.

GPU & Cluster Environments (CUDA 11.0)

conda create --name mjolnir python=3.8
conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch   # CUDA=11.0 on most of Cluster!
conda install ipython
conda install pytorch-lightning -c conda-forge

pip install black flake8 isort matplotlib pre-commit quinine wandb

# Install other dependencies via pip below -- conda dependencies should be added above (always conda before pip!)
...

CPU Environments (Usually for Local Development -- Geared for Mac OS & Linux)

Similar to the above, but installs the CPU-only versions of Torch and similar dependencies.

conda create --name mjolnir python=3.8
conda install pytorch torchvision torchaudio -c pytorch
conda install ipython
conda install pytorch-lightning -c conda-forge

pip install black flake8 isort matplotlib pre-commit quinine wandb

# Install other dependencies via pip below -- conda dependencies should be added above (always conda before pip!)
...

Containerized Setup

Support for running mjolnir inside of a Docker or Singularity container is TBD. If this support is urgently required, please file an issue.

Owner
Sidd Karamcheti
PhD Student at Stanford & Research Intern at Hugging Face 🤗
Sidd Karamcheti
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022