Code for Multimodal Neural SLAM for Interactive Instruction Following

Overview

Code for Multimodal Neural SLAM for Interactive Instruction Following

Code structure

The code is adapted from E.T. and most training as well as data processing files are in currently in the ET/notebooks folder and the et_train folder.

Dependency

Inherited from the E.T. repo, the package is depending on:

  • numpy
  • pandas
  • opencv-python
  • tqdm
  • vocab
  • revtok
  • numpy
  • Pillow
  • sacred
  • etaprogress
  • scikit-video
  • lmdb
  • gtimer
  • filelock
  • networkx
  • termcolor
  • torch==1.7.1
  • torchvision==0.8.2
  • tensorboardX==1.8
  • ai2thor==2.1.0
  • E.T. (https://github.com/alexpashevich/E.T.)

MaskRCNN Fine-tuning

To fine-tune the MaskRCNN module used in solving the Alfred challenge, we provide the code adapted from the official PyTorch tutorial.

Setup

We assume the environment and the code structure as in the E.T. model is set up, with this repo served as an extension. Although the fine-tuning code should be a standalone unit.

Training Data Geneation

Given a traj_data.json file (e.g., the 45K one used in E.T. joint-training here), run python -m alfred.gen.render_trajs as in E.T. to render the training inputs (raw images) and the ground truth labels (instance segmentation masks) for all the frames recorded in the traj_data.json files. Make sure the flag for generating instance level segmentation masks is set to True.

Pre-processing Instance Segmentation Masks

The rendered instance segmentation masks need to be preprocessed so that the data format is aligned with the one used in the official PyTorch tutorial. In specific, each generated mask is of a different RGB color per instance, which is mapped to the unique instance index in the frame as well as a label index for its semantic class. The mapping is constructed by looking up the traj['scene']['color_to_object_type'] in each of the json dictionaries. The code also supports the functionality to only collect training data from certain subgoal data (such as for PickupObject in Alfred). Notice that there are some bugs in the rendering process of the masks which creates some artifacts (small regions in the ground truth labels that correspond to no actual objects). This can be fixed by only selecting instance masks that are larger than certain area (e.g., > 10 as in alfred/data/maskrcnn.py).

Training

Run python -m alfred.maskrcnn.train which first loads the pre-trained model provided by E.T. and then fine-tunes it on the pre-processed data mentioned above.

Evaluation

We follow the MSCOCO evaluation protocal which is widely used for object detection and instance segmentation, which output average precision and recall at multiple scales. The evaluation function call evaluate(model, data_loader_test, device=device) in alfred/maskrcnn/train.py serves as an example.

Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022