PIZZA - a task-oriented semantic parsing dataset

Overview

PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

The dataset comes in two main versions, one in a recently introduced utterance-level hierarchical notation that we call TOP, and one whose targets are executable representations (EXR).

Below are two examples of orders that can be found in the data:

{
    "dev.SRC": "five medium pizzas with tomatoes and ham",
    "dev.EXR": "(ORDER (PIZZAORDER (NUMBER 5 ) (SIZE MEDIUM ) (TOPPING HAM ) (TOPPING TOMATOES ) ) )",
    "dev.TOP": "(ORDER (PIZZAORDER (NUMBER five ) (SIZE medium ) pizzas with (TOPPING tomatoes ) and (TOPPING ham ) ) )"
}
{
    "dev.SRC": "i want to order two medium pizzas with sausage and black olives and two medium pizzas with pepperoni and extra cheese and three large pizzas with pepperoni and sausage",
    "dev.EXR": "(ORDER (PIZZAORDER (NUMBER 2 ) (SIZE MEDIUM ) (COMPLEX_TOPPING (QUANTITY EXTRA ) (TOPPING CHEESE ) ) (TOPPING PEPPERONI ) ) (PIZZAORDER (NUMBER 2 ) (SIZE MEDIUM ) (TOPPING OLIVES ) (TOPPING SAUSAGE ) ) (PIZZAORDER (NUMBER 3 ) (SIZE LARGE ) (TOPPING PEPPERONI ) (TOPPING SAUSAGE ) ) )",
    "dev.TOP": "(ORDER i want to order (PIZZAORDER (NUMBER two ) (SIZE medium ) pizzas with (TOPPING sausage ) and (TOPPING black olives ) ) and (PIZZAORDER (NUMBER two ) (SIZE medium ) pizzas with (TOPPING pepperoni ) and (COMPLEX_TOPPING (QUANTITY extra ) (TOPPING cheese ) ) ) and (PIZZAORDER (NUMBER three ) (SIZE large ) pizzas with (TOPPING pepperoni ) and (TOPPING sausage ) ) )"
}

While more details on the dataset conventions and construction can be found in the paper, we give a high level idea of the main rules our target semantics follow:

  • Each order can include any number of pizza and/or drink suborders. These suborders are labeled with the constructors PIZZAORDER and DRINKORDER, respectively.
  • Each top-level order is always labeled with the root constructor ORDER.
  • Both pizza and drink orders can have NUMBER and SIZE attributes.
  • A pizza order can have any number of TOPPING attributes, each of which can be negated. Negative particles can have larger scope with the use of the or particle, e.g., no peppers or onions will negate both peppers and onions.
  • Toppings can be modified by quantifiers such as a lot or extra, a little, etc.
  • A pizza order can have a STYLE attribute (e.g., thin crust style or chicago style).
  • Styles can be negated.
  • Each drink order must have a DRINKTYPE (e.g. coke), and can also have a CONTAINERTYPE (e.g. bottle) and/or a volume modifier (e.g., three 20 fl ounce coke cans).

We view ORDER, PIZZAORDER, and DRINKORDER as intents, and the rest of the semantic constructors as composite slots, with the exception of the leaf constructors, which are viewed as entities (resolved slot values).

Dataset statistics

In the below table we give high level statistics of the data.

Train Dev Test
Number of utterances 2,456,446 348 1,357
Unique entities 367 109 180
Avg entities per utterance 5.32 5.37 5.42
Avg intents per utterance 1.76 1.25 1.28

More details can be found in appendix of our publication.

Getting Started

The repo structure is as follows:

PIZZA
|
|_____ data
|      |_____ PIZZA_train.json.zip             # a zipped version of the training data
|      |_____ PIZZA_train.10_percent.json.zip  # a random subset representing 10% of training data
|      |_____ PIZZA_dev.json                   # the dev portion of the data
|      |_____ PIZZA_test.json                  # the test portion of the data
|
|_____ utils
|      |_____ __init__.py
|      |_____ entity_resolution.py # entity resolution script
|      |_____ express_utils.py     # utilities
|      |_____ semantic_matchers.py # metric functions
|      |_____ sexp_reader.py       # tree reader helper functions 
|      |_____ trees.py             # tree classes and readers
|      |
|      |_____ catalogs             # directory with catalog files of entities
|      
|_____ doc 
|      |_____ PIZZA_dataset_reader_metrics_examples.ipynb
|
|_____ READMED.md

The dev and test data files are json lines files where each line represents one utterance and contains 4 keys:

  • *.SRC: the natural language order input
  • *.EXR: the ground truth target semantic representation in EXR format
  • *.TOP: the ground truth target semantic representation in TOP format
  • *.PCFG_ERR: a boolean flag indicating whether our PCFG system parsed the utterance correctly. See publication for more details

The training data file comes in a similar format, with two differences:

  • there is no train.PCFG_ERR flag since the training data is all synthetically generated hence parsable with perfect accuracy. In other words, this flag would be True for all utterances in that file.
  • there is an extra train.TOP-DECOUPLED key that is the ground truth target semantic representation in TOP-Decoupled format. See publication for more details.

Security

See CONTRIBUTING for more information.

License

This library is licensed under the CC-BY-NC-4.0 License.

Chinese NewsTitle Generation Project by GPT2.带有超级详细注释的中文GPT2新闻标题生成项目。

GPT2-NewsTitle 带有超详细注释的GPT2新闻标题生成项目 UpDate 01.02.2021 从网上收集数据,将清华新闻数据、搜狗新闻数据等新闻数据集,以及开源的一些摘要数据进行整理清洗,构建一个较完善的中文摘要数据集。 数据集清洗时,仅进行了简单地规则清洗。

logCong 785 Dec 29, 2022
Paddlespeech Streaming ASR GUI

Paddlespeech-Streaming-ASR-GUI Introduction A paddlespeech Streaming ASR GUI. Us

Niek Zhen 3 Jan 05, 2022
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Blue Brain text mining toolbox for semantic search and structured information extraction

Blue Brain Search Source Code DOI Data & Models DOI Documentation Latest Release Python Versions License Build Status Static Typing Code Style Securit

The Blue Brain Project 29 Dec 01, 2022
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
NLP library designed for reproducible experimentation management

Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can

Feedly 290 Dec 20, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.

Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem

Hamtech-ai 15 Aug 25, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Jan 07, 2023
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
Basic yet complete Machine Learning pipeline for NLP tasks

Basic yet complete Machine Learning pipeline for NLP tasks This repository accompanies the article on building basic yet complete ML pipelines for sol

Ivan 20 Aug 22, 2022
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022