Must-read papers on improving efficiency for pre-trained language models.

Overview

Awesome Efficient PLM Papers

Must-read papers on improving efficiency for pre-trained language models.

The paper list is mainly mantained by Lei Li and Shuhuai Ren.

Knowledge Distillation

  1. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter NeurIPS workshop

    Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf [pdf] [project]

  2. Patient Knowledge Distillation for BERT Model Compression EMNLP 2019

    Siqi Sun, Yu Cheng, Zhe Gan, Jingjing Liu [pdf] [project]

  3. Well-Read Students Learn Better: On the Importance of Pre-training Compact Models Preprint

    Iulia Turc, Ming-Wei Chang, Kenton Lee, Kristina Toutanova [pdf] [project]

  4. TinyBERT: Distilling BERT for Natural Language Understanding Findings of EMNLP 2020

    Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, Qun Liu [pdf] [project]

  5. BERT-of-Theseus: Compressing BERT by Progressive Module Replacing EMNLP 2020

    Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, Ming Zhou [pdf] [project]

  6. MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers NeurIPS 2020

    Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, Ming Zhou [pdf] [project]

  7. BERT-EMD: Many-to-Many Layer Mapping for BERT Compression with Earth Mover's Distance EMNLP 2020

    Jianquan Li, Xiaokang Liu, Honghong Zhao, Ruifeng Xu, Min Yang, Yaohong Jin [pdf] [project]

  8. MixKD: Towards Efficient Distillation of Large-scale Language Models ICLR 2021

    Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan Zhou, Weizhu Chen, Changyou Chen, Lawrence Carin [pdf]

  9. Meta-KD: A Meta Knowledge Distillation Framework for Language Model Compression across Domains ACL-IJCNLP 2021

    Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang Zhang, Yaliang Li, Jun Huang [pdf]

  10. MATE-KD: Masked Adversarial TExt, a Companion to Knowledge Distillation ACL-IJCNLP 2021

    Ahmad Rashid, Vasileios Lioutas, Mehdi Rezagholizadeh [pdf]

  11. Structural Knowledge Distillation: Tractably Distilling Information for Structured Predictor ACL-IJCNLP 2021

    Xinyu Wang, Yong Jiang, Zhaohui Yan, Zixia Jia, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang, Kewei Tu [pdf] [project]

  12. Weight Distillation: Transferring the Knowledge in Neural Network Parameters ACL-IJCNLP 2021

    Ye Lin, Yanyang Li, Ziyang Wang, Bei Li, Quan Du, Tong Xiao, Jingbo Zhu [pdf]

  13. Marginal Utility Diminishes: Exploring the Minimum Knowledge for BERT Knowledge Distillation ACL-IJCNLP 2021

    Yuanxin Liu, Fandong Meng, Zheng Lin, Weiping Wang, Jie Zhou [pdf]

  14. MiniLMv2: Multi-Head Self-Attention Relation Distillation for Compressing Pretrained Transformers Findings of ACL-IJCNLP 2021

    Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong, Furu Wei [pdf] [project]

  15. One Teacher is Enough? Pre-trained Language Model Distillation from Multiple Teachers Findings of ACL-IJCNLP 2021

    Chuhan Wu, Fangzhao Wu, Yongfeng Huang [pdf]

Dynamic Early Exiting

  1. DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference ACL 2020

    Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, Jimmy Lin [pdf] [project]

  2. FastBERT: a Self-distilling BERT with Adaptive Inference Time ACL 2020

    Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, Qi Ju [pdf] [project]

  3. The Right Tool for the Job: Matching Model and Instance Complexities ACL 2020

    Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse Dodge, Noah A. Smith [pdf] [project]

  4. A Global Past-Future Early Exit Method for Accelerating Inference of Pre-trained Language Models NAACL 2021

    Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su, Xu Sun, Bin He [pdf] [project]

  5. CascadeBERT: Accelerating Inference of Pre-trained Language Models via Calibrated Complete Models Cascade Preprint

    Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li, Jie Zhou, Xu Sun [pdf] [project]

  6. Early Exiting BERT for Efficient Document Ranking SustaiNLP 2020

    Ji Xin, Rodrigo Nogueira, Yaoliang Yu, and Jimmy Lin [pdf] [project]

  7. BERxiT: Early Exiting for BERT with Better Fine-Tuning and Extension to Regression EACL 2021

    Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin [pdf] [project]

  8. Accelerating BERT Inference for Sequence Labeling via Early-Exit ACL 2021

    Xiaonan Li, Yunfan Shao, Tianxiang Sun, Hang Yan, Xipeng Qiu, Xuanjing Huang [pdf] [project]

  9. BERT Loses Patience: Fast and Robust Inference with Early Exit NeurIPS 2020

    Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, Furu Wei [pdf] [project]

  10. Early Exiting with Ensemble Internal Classifiers Preprint

    Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu [pdf]

Quantization

  1. Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT AAAI 2020

    Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W. Mahoney, Kurt Keutzer [pdf] [project]

  2. TernaryBERT: Distillation-aware Ultra-low Bit BERT EMNLP 2020

    Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, Qun Liu [pdf] [project]

  3. Q8BERT: Quantized 8Bit BERT NeurIPS 2019 Workshop

    Ofir Zafrir, Guy Boudoukh, Peter Izsak, Moshe Wasserblat [pdf] [project]

  4. BinaryBERT: Pushing the Limit of BERT Quantization EMNLP 2020

    Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, Irwin King [pdf] [project]

  5. I-BERT: Integer-only BERT Quantization ICML 2021

    Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer [pdf] [project]

Pruning

  1. Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned ACL 2019

    Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, Ivan Titov [pdf] [project]

  2. Are Sixteen Heads Really Better than One? NeurIPS 2019

    Paul Michel, Omer Levy, Graham Neubig [pdf] [project]

  3. The Lottery Ticket Hypothesis for Pre-trained BERT Networks NeurIPS 2020

    Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, Michael Carbin [pdf] [project]

  4. Movement Pruning: Adaptive Sparsity by Fine-Tuning NeurIPS 2020

    Victor Sanh, Thomas Wolf, Alexander M. Rush [pdf] [project]

  5. Reducing Transformer Depth on Demand with Structured Dropout Preprint

    Angela Fan, Edouard Grave, Armand Joulin [pdf]

  6. When BERT Plays the Lottery, All Tickets Are Winning EMNLP 2020

    Sai Prasanna, Anna Rogers, Anna Rumshisky [pdf] [project]

  7. Structured Pruning of a BERT-based Question Answering Model Preprint

    J.S. McCarley, Rishav Chakravarti, Avirup Sil [pdf]

  8. Structured Pruning of Large Language Models EMNLP 2020

    Ziheng Wang, Jeremy Wohlwend, Tao Lei [pdf] [project]

  9. Rethinking Network Pruning -- under the Pre-train and Fine-tune Paradigm NAACL 2021

    Dongkuan Xu, Ian E.H. Yen, Jinxi Zhao, Zhibin Xiao [pdf]

  10. Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization ACL 2021

    Chen Liang, Simiao Zuo, Minshuo Chen, Haoming Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, Weizhu Chen [pdf] [project]

Contribution

If you find any related work not included in the list, do not hesitate to raise a PR to help us complete the list.

Owner
Tobias Lee
On the way becoming an NLPer.
Tobias Lee
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 797 Dec 26, 2022
Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Junbum Lee 12 Oct 26, 2022
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"

Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis

International Business Machines 10 Dec 14, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
Converts python code into c++ by using OpenAI CODEX.

🦾 codex_py2cpp 🤖 OpenAI Codex Python to C++ Code Generator Your Python Code is too slow? 🐌 You want to speed it up but forgot how to code in C++? ⌨

Alexander 423 Jan 01, 2023
A text file containing 479k English words for all your dictionary/word-based projects e.g: auto-completion / autosuggestion

List Of English Words A text file containing over 466k English words. While searching for a list of english words (for an auto-complete tutorial) I fo

dwyl 8.5k Jan 03, 2023
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
CPC-big and k-means clustering for zero-resource speech processing

The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.

Benjamin van Niekerk 5 Nov 23, 2022
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

molten A minimal, extensible, fast and productive API framework for Python 3. Changelog: https://moltenframework.com/changelog.html Community: https:/

3.2k Dec 28, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
Must-read papers on improving efficiency for pre-trained language models.

Must-read papers on improving efficiency for pre-trained language models.

Tobias Lee 89 Jan 03, 2023