Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Overview

Data Augmentation using Pre-trained Transformer Models

Code associated with the Data Augmentation using Pre-trained Transformer Models paper

Code contains implementation of the following data augmentation methods

  • EDA (Baseline)
  • Backtranslation (Baseline)
  • CBERT (Baseline)
  • BERT Prepend (Our paper)
  • GPT-2 Prepend (Our paper)
  • BART Prepend (Our paper)

DataSets

In paper, we use three datasets from following resources

Low-data regime experiment setup

Run src/utils/download_and_prepare_datasets.sh file to prepare all datsets.
download_and_prepare_datasets.sh performs following steps

  1. Download data from github
  2. Replace numeric labels with text for STSA-2 and TREC dataset
  3. For a given dataset, creates 15 random splits of train and dev data.

Dependencies

To run this code, you need following dependencies

  • Pytorch 1.5
  • fairseq 0.9
  • transformers 2.9

How to run

To run data augmentation experiment for a given dataset, run bash script in scripts folder. For example, to run data augmentation on snips dataset,

  • run scripts/bart_snips_lower.sh for BART experiment
  • run scripts/bert_snips_lower.sh for rest of the data augmentation methods

How to cite

@inproceedings{kumar-etal-2020-data,
    title = "Data Augmentation using Pre-trained Transformer Models",
    author = "Kumar, Varun  and
      Choudhary, Ashutosh  and
      Cho, Eunah",
    booktitle = "Proceedings of the 2nd Workshop on Life-long Learning for Spoken Language Systems",
    month = dec,
    year = "2020",
    address = "Suzhou, China",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.lifelongnlp-1.3",
    pages = "18--26",
}

Contact

Please reachout to [email protected] for any questions related to this code.

License

This project is licensed under the Creative Common Attribution Non-Commercial 4.0 license.

Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
HiFi DeepVariant + WhatsHap workflowHiFi DeepVariant + WhatsHap workflow

HiFi DeepVariant + WhatsHap workflow Workflow steps align HiFi reads to reference with pbmm2 call small variants with DeepVariant, using two-pass meth

William Rowell 2 May 14, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
test

Lidar-data-decode In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any hug

46 Dec 05, 2022
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
Code and data accompanying Natural Language Processing with PyTorch

Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning By Delip Rao and Brian McMahan Welcome. This is a

Joostware 1.8k Jan 01, 2023
Simple NLP based project without any use of AI

Simple NLP based project without any use of AI

Shripad Rao 1 Apr 26, 2022
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

🌳 Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La

LCS2-IIITDelhi 5 Sep 13, 2022
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R

Yoon Kim 2k Jan 02, 2023
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022