A minimal Conformer ASR implementation adapted from ESPnet.

Overview

Conformer ASR

A minimal Conformer ASR implementation adapted from ESPnet.

Introduction

I want to use the pre-trained English ASR model provided by ESPnet. However, ESPnet is relatively heavy for me. So here I try to extract only the conformer ASR part from ESPnet so that I can do better customization. Let's do it.

There are bunch of models available for ASR listed here. I choose the one with name:

kamo-naoyuki/librispeech_asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_scheduler_confwarmup_steps40000_optim_conflr0.0025_sp_valid.acc.ave
Its performance can be found [here](https://zenodo.org/record/4604066#.YbxsX5FByV4), toggle me to see.
  • WER
dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_asr_asr_model_valid.acc.ave/dev_clean 2703 54402 97.9 1.9 0.2 0.2 2.3 28.6
decode_asr_asr_model_valid.acc.ave/dev_other 2864 50948 94.5 5.1 0.5 0.6 6.1 48.3
decode_asr_asr_model_valid.acc.ave/test_clean 2620 52576 97.7 2.1 0.2 0.3 2.6 31.4
decode_asr_asr_model_valid.acc.ave/test_other 2939 52343 94.7 4.9 0.5 0.7 6.0 49.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_clean 2703 54402 98.3 1.5 0.2 0.2 1.9 25.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_other 2864 50948 95.8 3.7 0.4 0.5 4.6 40.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_clean 2620 52576 98.1 1.7 0.2 0.3 2.1 26.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_other 2939 52343 95.8 3.7 0.5 0.5 4.7 42.4
  • CER
dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_asr_asr_model_valid.acc.ave/dev_clean 2703 288456 99.4 0.3 0.2 0.2 0.8 28.6
decode_asr_asr_model_valid.acc.ave/dev_other 2864 265951 98.0 1.2 0.8 0.7 2.7 48.3
decode_asr_asr_model_valid.acc.ave/test_clean 2620 281530 99.4 0.3 0.3 0.3 0.9 31.4
decode_asr_asr_model_valid.acc.ave/test_other 2939 272758 98.2 1.0 0.7 0.7 2.5 49.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_clean 2703 288456 99.5 0.3 0.2 0.2 0.7 25.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_other 2864 265951 98.3 1.0 0.7 0.5 2.2 40.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_clean 2620 281530 99.5 0.3 0.3 0.2 0.7 26.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_other 2939 272758 98.5 0.8 0.7 0.5 2.1 42.4
  • TER
dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_asr_asr_model_valid.acc.ave/dev_clean 2703 68010 97.5 1.9 0.7 0.4 2.9 28.6
decode_asr_asr_model_valid.acc.ave/dev_other 2864 63110 93.4 5.0 1.6 1.0 7.6 48.3
decode_asr_asr_model_valid.acc.ave/test_clean 2620 65818 97.2 2.0 0.8 0.4 3.3 31.4
decode_asr_asr_model_valid.acc.ave/test_other 2939 65101 93.7 4.5 1.8 0.9 7.2 49.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_clean 2703 68010 97.8 1.5 0.7 0.3 2.5 25.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/dev_other 2864 63110 94.6 3.8 1.6 0.7 6.1 40.0
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_clean 2620 65818 97.6 1.6 0.8 0.3 2.7 26.2
decode_asr_lm_lm_train_lm_transformer2_bpe5000_scheduler_confwarmup_steps25000_batch_bins500000000_accum_grad2_use_amptrue_valid.loss.ave_asr_model_valid.acc.ave/test_other 2939 65101 94.7 3.5 1.8 0.7 6.0 42.4

ASR step by step

1. Setup code

pip install .

2. Download the model and unzip it

wget https://zenodo.org/record/4604066/files/asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_bpe5000_scheduler_confwarmup_steps40000_optim_conflr0.0025_sp_valid.acc.ave.zip?download=1 -o conformer.zip
unzip conformer.zip

3. Run an example

import torch
import librosa
from mmds.utils.spectrogram import MelSpectrogram
from conformer_asr import Conformer, Tokenizer

sample_rate = 16000
cfg_path = "./exp_unnorm/asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_unnorm_bpe5000/config.yaml"
bpe_path = "./data/en_unnorm_token_list/bpe_unigram5000/bpe.model"
ckpt_path = "./exp_unnorm/asr_train_asr_conformer6_n_fft512_hop_length256_raw_en_unnorm_bpe5000/valid.acc.ave_10best.pth"

tokenizer = Tokenizer(cfg_path, bpe_path)
conformer = Conformer(tokenizer, ckpt_path=ckpt_path)
conformer.eval()

spec_fn = MelSpectrogram(
    sample_rate,
    hop_length=256,
    f_min=0,
    f_max=8000,
    win_length=512,
    power=2,
)

w0, _ = librosa.load("./example.m4a", sample_rate)
w0 = torch.from_numpy(w0)
m0 = spec_fn(w0).t()

l = len(m0)

# create batch with different length audio (yes, supported)
x = [m0, m0[: l // 2], m0[: l // 4]]

ref = "This is a test video for youtube-dl. For more information, contact [email protected]".lower()
hyps = conformer.decode(x, beam_width=20)

print("REF", ref)
for hyp in hyps:
    print("HYP", hyp.lower())
  • Results
REF this is a test video for youtube-dl. for more information, contact [email protected]
HYP this is a test video for you do bl for more information -- contact the hih aging at the hihaging, not the
HYP this is a test for you d bl for more information
HYP this is a testim for you to

Features

Supported

  • Batched decoding

Not supported yet

  • Transformer language model
  • Other checkpoints
Owner
Niu Zhe
Niu Zhe
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
Ray-based parallel data preprocessing for NLP and ML.

Wrangl Ray-based parallel data preprocessing for NLP and ML. pip install wrangl # for latest pip install git+https://github.com/vzhong/wrangl See exa

Victor Zhong 33 Dec 27, 2022
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023