Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

Overview

FL Analysis

This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness" submitted to EMSE journal.

Replication

Main experiment

All experiments are done using python 3.8 and TensorFlow 2.4

Steps to run the experiments are as follows:

  1. The options for each configuration are set in JSON file which should be in the root directory by default. However, this can be changed using the environment variable CONFIG_PATH.

  2. The paths for the output and the processed ADNI dataset is set using the environment variables RESULTS_ROOT and ADNI_ROOT respectively. If these variables are not set the mentioned paths will use "./results" and "./adni" as default.

  3. Run the main program by python test.py

  • Note that the results will be overwritten if same config is run for multiple time. To avoid that RESULTS_ROOT can be changed at each run.

Config details

The config file can have the following options:

    "dataset": one of the following 
      "adni"
      "mnist"
      "cifar"
    "aggregator": one of the following 
      "fed-avg"
      "median"
      "trimmed-mean"
      "krum"
      "combine"
    "attack": one of the following
      "label-flip"
      "noise-data"
      "overlap-data"
      "delete-data"
      "unbalance-data"
      "random-update"
      "sign-flip"
      "backdoor"
    "attack-fraction": a float between 0 and 1
    "non-iid-deg": a float between 0 and 1
    "num-rounds": an integer value

Notes:

  1. attack field is optional. If it is not present, no attack will be applied and attack-fraction is not necessary.
  2. If dataset is set to adni, non-iid-deg field is not necessary
  3. The aggregator field is optional and if it is not present it will use the default fed-avg.
  4. All configurations used in our experiments are available in configs folder

ADNI dataset

ADNI dataset is not included in the repository due to user agreements, but information about it is available in www.adni-info.org.

Once the dataset is available, data can be processed with extract_central_axial_slices_adni.ipynb

Results Visualization

Results can be visualized using the visualizer.ipynb.

  • The root folder of the results should be set in the notebook before running.
  • Visualizations will be saved in the root folder under 0images folder.
  • The visualizer expects the root sub folders to be the results of the different runs.

An example:


_root
├── _run1
│   ├── cifar-0--fedavg--clean
│   └── cifar-0--krum--clean
├── _run2
│   ├── cifar-0--fedavg--clean
│   └── cifar-0--krum--clean
└── _run3
    ├── cifar-0--fedavg--clean
    └── cifar-0--krum--clean


Results

All results are available in the results folder (ADNI, CIFAR, Fashion MNIST, Ensemble). Each sub folder that represents a dataset contains the details of runs, plus processed visualizations and raw csv files in a folder called 0images.

The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
A Simple Example for Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env

Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env This repository implements a simple algorithm for imitation learning: DAGGER. In thi

Hao 66 Nov 23, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022