Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Overview

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

(c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 2021

About

What's included in this Repo

The repository includes the codes for data / label preparation and inferencing the future knee radiograph, training and testing the baseline classifier and also the links to the pre-trained generative model.

Focus of the current work

Osteoarthritis (OA) is the most common joint disorder in the world affecting 10% of men and 18% of women over 60 years of age. In this paper, we present an unsupervised learning scheme to predict the future image appearance of patients at recurring visits.

By exploring the latent temporal trajectory based on knee radiographs, our system predicts the risk of accelerated progression towards OA and surpasses its supervised counterpart. We demonstrate this paradigm with seven radiologists who were tasked to predict which patients will undergo a rapid progression.

Requirements

pytorch 1.8.1
tensorboard 2.5.0
numpy 1.20.3
scipy 1.6.2
scikit-image 0.18.1
pandas
tqdm
glob
pickle5
  • StyleGAN2-ADA-Pytorch
    This repository is an official reimplementation of StyleGAN2-ADA in PyTorch, focusing on correctness, performance, and compatibility.
  • KNEE Localization
    The repository includes the codes for training and testing, annotations for the OAI dataset and also the links to the pre-trained models.
  • Robust ResNet classifier
    The repository contains codes for developing robust ResNet classifier with a superior performance and interpretability.

How to predict the future state of a knee

Preparing the training data and labels

Download all available OAI and MOST images from https://nda.nih.gov/oai/ and https://most.ucsf.edu/. The access to the images is free and painless. You just need to register and provide the information about yourself and agree with the terms of data use. Besides, please also download the label files named Semi-Quant_Scoring_SAS and MOSTV01235XRAY.txt from OAI and MOST, separately.

Following the repo of KNEE Localization, we utilized a pre-trained Hourglass network and extracted 52,981 and 20,158 (separated left or right) knee ROI (256x256) radiographs from both OAI and MOST datasets. We further extract the semi-quantitative assessment Kellgren-Lawrence Score (KLS) from the labels files above. To better relate imaging and tabular data together, in OAI dataset, we name the knee radiographs using ID_BARCDBU_DATE_SIDE.png, e.g., 9927360_02160601_20070629_l.png. For instance, to generate the KLS label file (most.csv) of the MOST dataset, one can run:

python kls.py

Training a StyleGAN2 model on radiological data

Follow the official repo StyleGAN2, datasets are stored as uncompressed ZIP archives containing uncompressed PNG files. Our datasets can be created from a folder containing radiograph images; see python dataset_tool.py --help for more information. In the auto configuration, training a OAI GAN boils down to:

python train.py --outdir=~/training-runs --data=~/OAI_data.zip --gpus=2

The total training time on 2 Titan RTX cards with a resolution of 256x256 takes around 4 days to finish. The best GAN model of our experiment can be downloaded at here.

Projecting training radiographs to latent space

To find the matching latent vector for a given training set, run:

python projector.py --outdir=~/pro_out --target=~/training_set/ --network=checkpoint.pkl

The function multi_projection() within the script will generate a dictionary contains pairs of image name and its corresponding latent code and individual projection folders.

Synthesize future radiograph

  • require: A pre-trained network G, test dataframe path (contains test file names), and individual projection folders (OAI training set). To predict the baseline radiographs within the test dataframe, just run:
python prog_w.py --network=checkpoint.pkl --frame=test.csv --pfolder=~/pro_out/ 

Estimating the risk of OA progression

In this study, we have the ability to predict the morphological appearance of the radiograph at a future time point and compute the risk based on the above synthesized state. We used an adversarially trained ResNet model that can correctly classify the KLS of the input knee radiograph.

To generate the ROC curve of our model, run:

python risk.py --ytrue=~/y_true.npy --ystd=~/baseline/pred/y_pred.npy --ybase=~/kls_cls/pred/ypred.npy --yfinal=~/kls_cls/pred/ypred_.npy --df=~/oai.csv

Baseline classifier

To compare what is achievable with supervised learning based on the existing dataset, we finetune a ResNet-50 classifier pretrained on ImageNet that tries to distinguish fast progressors based on baseline radiographs in a supervised end-to-end manner. The output probability of such a classifier is based on baseline radiographs only. To train the classifier, after putting the label files to the base_classifier/label folder, one can run:

cd base_classifier/
python train.py --todo train --data_root ../Xray/dataset_oai/imgs/ --affix std --pretrain True --batch_size 32

To test, just run:

cd base_classifier/
python train.py --todo test --data_root ../Xray/dataset_oai/imgs/ --batch_size 1

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Citation

@misc{han2021predicting,
      title={Predicting Osteoarthritis Progression in Radiographs via Unsupervised Representation Learning}, 
      author={Tianyu Han and Jakob Nikolas Kather and Federico Pedersoli and Markus Zimmermann and Sebastian Keil and Maximilian Schulze-Hagen and Marc Terwoelbeck and Peter Isfort and Christoph Haarburger and Fabian Kiessling and Volkmar Schulz and Christiane Kuhl and Sven Nebelung and Daniel Truhn},
      year={2021},
      eprint={2111.11439},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Acknowledgments

You might also like...
This repo is a PyTorch implementation for Paper
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

A PyTorch implementation of the paper
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Releases(v1.0)
Owner
Tianyu Han
Tianyu Han
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022