This is the code of using DQN to play Sekiro .

Overview

Update for using DQN to play sekiro 2021.2.2(English Version)

This is the code of using DQN to play Sekiro .

I am very glad to tell that I have writen the codes of using DQN to play Sekiro . As is known to all , Supervised learning can only learn skills from the data we provide for it . However , this time by using Reinforcement Learning , we can see a more clever agent playing Sekiro .

Reinforcement Learning can update its network by itself , using the reward feedback , which means we no longer need to collect our own data sets this time . All the data sets come from the real-time interaction between DQN network and the game. By using this DQN network , you can fight any boss you want in the game . There still something you need to know :

Have fun !

Old version sekiro_tensorflow

Code link for using Supervised learning to play Sekiro : https://github.com/analoganddigital/sekiro_tensorflow

Hello everyone , this is analoganddigital . I use this code to complete an interesting porgram of using machine learning to play Sekiro . You can see the final presentation in https://www.bilibili.com/video/BV1wC4y1s7oa/ . I am a junior student in university , which means I can't spend too much time on this program . What a shame ! On the other hand , many audiences hope me share this code . Thus , I eventually put it on the GitHub . This is an interesting program , and I hope everyone can enjoy it. In addition , I really welcome you to improve this program , to make this AI more smart ! There still something you need to konw:

  • The window size I set is 96*86 , you can change it by yourselves .
  • I finally collected 300M training data , if you want better result , maybe you need to collect more data .
  • I use Alexnet to finish the training . This program is depend on Supervised learning.
  • I have no idea about using Reinforcement learning yet , so I will really appreciate it if someone can help me to overcome this difficulty.(already finished)
  • See the tutorial video for specific code usage , link : https://www.bilibili.com/video/BV1bz4y1R7kB

Reference : https://github.com/Sentdex/pygta5/blob/master/LICENSE

更新——强化学习DQN打只狼 2021.2.2(中文说明)

我非常高兴地告诉大家,我最近又开发出了用DQN强化学习打只狼的代码。 众所周知,监督学习只能学习到我们所提供的数据集的相关技能,但是利用强化学习,我们将看到一个完全不一样的只狼。

强化学习会根据reward奖励进行判断并且自己学习一种打斗方法。更重要的是,我们这次不再需要自己收集数据集了,所有更新数据均来自于DQN网络与游戏的实时交互。 利用这个DQN代码(链接见下方),你可以挑战只狼中任何一个boss,只要boss的血条位置不变即可(因为我采用的是图像抓取的方式获取只狼的血量与boss的血量进行reward判断)。 然后还有一些注意事项:

祝各位玩得愉快!

旧版本用机器学习打只狼

旧版本的利用监督学习打只狼的代码链接: https://github.com/analoganddigital/sekiro_tensorflow

各位观众大家好,我GitHub用户名是analoganddigital。我用这个程序完成了机器学习打只狼这个项目。 最终效果视频可以看b站https://www.bilibili.com/video/BV1wC4y1s7oa/ 。 我是一个大三学生,真的非常抱歉没能长时间更新这个项目,所以我把它放到了GitHub上面,之前很多观众也是私信我想要代码。 总之我还是希望大家能喜欢这个小项目吧。当然,我非常希望大家能帮忙完善这个程序,万分感激,大家共同讨论我们会获益更多,这其实就是开源的意义。现在由于代码比较基础,所以训练效果不太好。我相信大家会有更多的点子,如果能更新一点算法,我们将会看到一个更机智的AI。我很感谢大家对之前视频的支持(受宠若惊),也十分期待大家有趣的优化,就算没有优化直接用也可以。 还有一些细节我这声明一下:

  • 我截取的图像大小是96*86的,各位可以根据自身情况选择。
  • 我最终只收集了300M的数据,如果你想训练效果更好的话,可能要收集更多。
  • 我用的神经网络是Alexnet,基于监督学习完成的。
  • 由于我能力有限,我还没想好如何用强化学习优化算法,所以如果有大佬能分享一下自己的才华,那将十分感谢。(目前已经实现)
  • 具体代码使用方法请见我在b站上发布的机器学习打只狼的教程视频,链接: https://www.bilibili.com/video/BV1bz4y1R7kB

部分参考代码: https://github.com/Sentdex/pygta5/blob/master/LICENSE

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022