Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Overview

header_image

Long Course

"Geophysical Python for Seismic Data Analysis"

Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si

Dipersiapkan oleh: Anang Sahroni

Waktu:

Sesi 1: 18 September 2021

Sesi 2: 25 September 2021

Tempat: Zoom Meeting

Agenda: Memberikan wawasan kepada mahasiswa Geofisika dalam pengolahan data Geofisika: pemrosesan data seismik menggunakan python.

Luaran

  1. Peserta dapat melakukan instalasi Python
  2. Peserta dapat membuat dan menggunakan Jupyter Notebook
  3. Peserta dapat membaca, memfilter, dan mengeplot peta dan statistik gempa bumi menggunakan modul umum Python seperti numpy, scipy, dan matplotlib
  4. Peserta dapat menentukan parameter gempa menggunakan metode yang sederhana pada Python memanfaatkan modul seismologi seperti obspy

Peralatan untuk peserta

Laptop ataupun Personal Computer (PC) yang terkoneksi dengan internet.
Jika hendak menjalankan kode tanpa instalasi bisa melalui: Binder

Data:

  1. Katalog Gempa Bumi Badan Meteorologi Klimatologi dan Geofisika (BMKG)
  2. Titik-titik Stasiun untuk berbagai jaringan seismometer

Jadwal

Topik
PRESESI: 17 September 2021
Instalasi Python dalam Miniconda atau PDF
1. Instalasi Miniconda pada Windows, Linux, ataupun MacOS
2. Menjalankan Python Console melalui Anaconda Prompt
3. Menulis kode dalam editor (Integrated Development Environment/IDE) kode dan menjalankannya melalui Anaconda Prompt
4. Pengenalan IDE dan beberapa contohnya
5. Menginstall pandas, numpy, matplotlib, scipy, Cartopy, dan notebook menggunakan Anaconda Prompt pada virtual environment
6. Menjalankan kode sederhana di Jupyter Notebook
7. Memanggil fungsi bawaan python (math), mencoba, dan memanggil bantuan (help) untuk masing-masing fungsi
8. Memberikan catatan dan gambar dalam bentuk Markdown di Jupyter Notebook
9. Menyimpan notebook pada repositori Github dan menambahkan ke Binder
10. Mengupdate notebook dan melakukan commit ke repositori
EXERCISE: Membuat panduan instalasi Miniconda pada Jupyter Notebook dan menambahkannya di repositori Github individu.
SESI 1: 18 September 2021
Introduction to geophysical programming using python: basic python for seismology Materi 1 (PDF/Open In Colab) dan Materi 2 (PDF/Open In Colab) atau Binder
1. Membaca data katalog menggunakan pandas
2. Membedakan jenis-jenis data antar kolom pada katalog (String, Integer, dan Float)
3. Mengambil salah satu kolom ke dalam bentuk List dan mempelajari metode-metode pada List (indexing, slicing, append, dan lain sebagainya)
4. Menggunakan for loop untuk mengkonversi format String menjadi datetime untuk waktu kejadian
5. Menggunakan conditional untuk memfilter katalog berdasarkan besar magnitudo atau waktu
6. Membuat fungsi untuk memfilter katalog berdasarkan kedalaman dan menyimpannya menjadi modul siap impor
7. Membuat plot magnitudo dengan jumlah kejadian dan waktu kejadian (dapat berupa G-R Plot atau plot sederhana)
8. Mengkombinasikan List latitude dan longitude untuk mengeplot episenter
9. Mengintegrasikan kolom magnitude untuk membedakan ukuran titik titik plot
10. Mengintegrasikan kolom kedalaman untuk membedakan warna titik plot
11. Menambahkan basemap pada plot Menggunakan Cartopy
EXERCISE: Membaca file titik stasiun, memfilter berdasarkan network, dan mengeplotnya bersama dengan titik-titik gempa.
SESI 2: 25 September 2021
Source Mechanism and processing seismic data with python : Determine earthquake epicenter, hypocenter, and type of P Wave
Jika menggunakan komputer lokal silahkan install modul yang dibutuhkan pada sesi dua dengan cara: conda install -c conda-forge xarray rasterio tqdm
1. Menentukan episenter dengan metode lingkaran Materi
2. Menentukan hiposenter dengan metode Geiger dan probabilistik Materi 1, Materi 2
3. Pengenalan pengolahan waveform dengan obspy Materi

Software untuk diinstall

  1. Miniconda. Instalasi Python akan dilakukan menggunakan Anaconda Distribution dalam bentuk lite yaitu Miniconda. Dengan Miniconda instalasi paket atau modul pendukung untuk Python akan lebih mudah dan tertata. Unduh installer Miniconda, pilih untuk versi Python 3.8.
  2. Editor teks agar penulisan kode lebih mudah karena biasanya sudah disertai pewarnaan kode (syntax highlighting) dan indentasi otomatis. Editor teks dapat menggunakan Notepad++, SublimeText, atau menggunakan IDE yang lebih kompleks seperti PyCharm dan Visual Studio Code.

Software-software yang dibutuhkan tersebut sudah harus diinstall sebelum proses pemberian materi dimulai karena ukurannya cukup besar.

Akun Github

Peserta workshop dianjurkan mendaftarkan akun GitHub melalui Daftar Github

Bacaan Tambahan:

Peserta dapat belajar pada Lesson di Software Carpentry dengan materi yang mendalam dan metode yang sama yaitu learning by doing.

Referensi

Panduan ini disusun terinspirasi dari materi pada Software Carpentry, materi inversi hiposenter probabilistik Igel & Geßele di Seismo Live,panduan workshop Leonardo Uieda pada repositori, serta Lisa Itauxe Python for ES Student berikut ini.

You might also like...
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

 A data analysis using python and pandas to showcase trends in school performance.
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

A collection of learning outcomes data analysis using Python and SQL, from DQLab.
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.
DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis. The main goal of the package is to accelerate the process of computing estimates of forward reachable sets for nonlinear dynamical systems.

Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

 Project under the certification
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

Releases(v1.0.0)
Owner
Anang Sahroni
newbie/amateur
Anang Sahroni
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022
For making Tagtog annotation into csv dataset

tagtog_relation_extraction for making Tagtog annotation into csv dataset How to Use On Tagtog 1. Go to Project Downloads 2. Download all documents,

hyeong 4 Dec 28, 2021
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
Retentioneering 581 Jan 07, 2023
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

PB2 101 Dec 07, 2022
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Stream-Kafka-ELK-Stack - Weather data streaming using Apache Kafka and Elastic Stack.

Streaming Data Pipeline - Kafka + ELK Stack Streaming weather data using Apache Kafka and Elastic Stack. Data source: https://openweathermap.org/api O

Felipe Demenech Vasconcelos 2 Jan 20, 2022
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Cloudera 759 Jan 07, 2023
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
Nobel Data Analysis

Nobel_Data_Analysis This project is for analyzing a set of data about people who have won the Nobel Prize in different fields and different countries

Mohammed Hassan El Sayed 1 Jan 24, 2022
Data cleaning tools for Business analysis

Datacleaning datacleaning tools for Business analysis This program is made for Vicky's work. You can use it, too. 数据清洗 该数据清洗工具是为了商业分析 这个程序是为了Vicky的工作而

Lin Jian 3 Nov 16, 2021
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
Monitor the stability of a pandas or spark dataframe ⚙︎

Population Shift Monitoring popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets.

ING Bank 403 Dec 07, 2022
This python script allows you to manipulate the audience data from Sl.ido surveys

Slido-Automated-VoteBot This python script allows you to manipulate the audience data from Sl.ido surveys Since Slido blocks interference from automat

Pranav Menon 1 Jan 24, 2022
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023
Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks

The following Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks (MOFs). The training set is extracted from the Cambridge S

1 Jan 09, 2022