Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which he recommends to buy. We will use this data to build a portfolio

Overview

Backtesting the "Cramer Effect" & Recommendations from Cramer

Cramer

Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which he recommends to buy. We will use this data to build a portfolio

The Cramer-effect/Cramer-bounce: After the show Mad Money the recommended stocks are bought by viewers almost immediately (afterhours trading) or on the next day at market open, increasing the price for a short period of time.

You can read about the setup and results in my Blog Post

You can also access the data easily with the Flat Data Viewer

How to use this repo

  • Automatic data scraping (with Github Actions): Every day at 00:00 the scrape_mad_money.py tool runs and commits the data (if there was a change) to this repo. Feel free to use the created .csv file for your own projects
    • (Why do we scrape the whole data range every day?): This way we can see the changes from commit to commit. If anything happens which would alter the historical data, we would be aware.
  • ("manual") Data scraping: Use the scrape_mad_money.py to get the buy and sell recommendations Cramer made over the years
    • Result is a .csv file which you can use
  • Backtesting the buy calls: Use the notebook mad_money_backtesting.ipynb
    • To add your backtesting strategy, go to the backtesting_strategies.py file and implement yours based on the existing ones

Warning: code quality is just "mehh", I did not pay much attention here, this is just a quick experiment

Backtesting

In the notebook there are notes how the experiment(s) were conducted and facts, limitations about the approach. You can also add your own approaches.

Available Strategies:

  • BuyAndHold (and repeat)
  • AfterShowBuyNextDayCloseSell
  • AfterShowBuyNextDayOpenSell
  • NextDayOpenBuyNextDayCloseSell

Buy and Hold (and repeat) Results

returns

returns

How is this different from the real-life scenario?

We backtest each mentioned stock individually, then aggregate the results. We define a cash amount for each symbol separately (e.g. $1k) and not an overall budget. This change should not alter the expected returns (in %) much if we assume you have infinite money, so you can put your money in each of the mentioned stocks every day.

As we don't have (free) complete after-hours trading data, the scenario when we "buy at the end of the Mad Money Show" is approximated with the value of the stock value at market close. This obviously alters the end result for the short term experiments if a stock has high daily volatility and it changes a lot afterhours. (Of course the "buy at next trading day open" is not effected by this, only if we count on the after hours data).

Owner
Gábor Vecsei
I push my boundaries as far as I can. Also I love chocolate. 😎
Gábor Vecsei
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

📈 Statistical Quality Control 📉 This repo contains a simple but effective tool made using python which can be used for quality control in statistica

SasiVatsal 8 Oct 18, 2022
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
BioMASS - A Python Framework for Modeling and Analysis of Signaling Systems

Mathematical modeling is a powerful method for the analysis of complex biological systems. Although there are many researches devoted on produ

BioMASS 22 Dec 27, 2022
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
Transform-Invariant Non-Negative Matrix Factorization

Transform-Invariant Non-Negative Matrix Factorization A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learn

EMD Group 6 Jul 01, 2022
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
An Integrated Experimental Platform for time series data anomaly detection.

Curve Sorry to tell contributors and users. We decided to archive the project temporarily due to the employee work plan of collaborators. There are no

Baidu 486 Dec 21, 2022
Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance companies

Insurance-Fraud-Claims Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance com

1 Jan 27, 2022
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊

Thomas 2 May 26, 2022
Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks

The following Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks (MOFs). The training set is extracted from the Cambridge S

1 Jan 09, 2022
Pandas and Dask test helper methods with beautiful error messages.

beavis Pandas and Dask test helper methods with beautiful error messages. test helpers These test helper methods are meant to be used in test suites.

Matthew Powers 18 Nov 28, 2022
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
CSV database for chihuahua (HUAHUA) blockchain transactions

super-fiesta Shamelessly ripped components from https://github.com/hodgerpodger/staketaxcsv - Thanks for doing all the hard work. This code does only

Arlene Macciaveli 1 Jan 07, 2022
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022