Baseline powergrid model for NY

Related tags

Deep LearningNYgrid
Overview

Baseline-powergrid-model-for-NY

Table of Contents
  1. About The Project
  2. Usage
  3. License
  4. Contact
  5. Acknowledgements

About The Project

As the urgency to address climate change intensifies, the integration of distributed and intermittent renewable resources in power grids will continue to accelerate. To ensure the reliability and efficacy of the transformed system, researchers and other stakeholders require a validated representation of the essential characteristics of the power grid that is accurate for a specific region under study. For example, the Climate Leadership and Community Protection Act (CLCPA) in New York sets ambitious targets for transformation of the energy system, opening many interesting research and analysis questions. To provide a platform for these analyses, this paper presents an overview of the current NYS power grid and develops an open-source1 baseline model using only publicly available data. The proposed model is validated with real data for power flow and Locational Marginal Prices (LMPs) to demonstrate the feasibility, functionality and consistency of the model with hourly data of 2019 as an example. The model is easily adjustable and customizable for various analyses of future configurations and scenarios that require spatial-temporal information of the NYS power grid with data access to all the available historical data, and serves as a practical system for general methods and algorithms testing.

Built With

The code is written with Matlab and depends on the installation of Matpower. Please go to the following websties and follow the instructions to install Matlab and Matpower.

Usage

  1. git clone https://github.com/AndersonEnergyLab-Cornell/NYgrid
  2. Add the full folder and the subfolders to your Matlab Path
  3. Modify the main.m file to run a specific case

Main.m

Specify a year, and download and format the data in that year. Downlaoded data are stored in the "Prep" directory. Formatted data are stored in the "Data" directory. For example, to run for Jan 1st 2019 1:00 am, modify the test year, month, day and hour.

  testyear = 2019;
  testmonth = 1;
  testday = 1;
  testhour = 1;

Data sources include:

  1. NYISO:
    • hourly fuel mix
    • hourly interface flow
    • hourly real time price
  2. RGGI:
    • hourly generation for thermal generators larger than 25 MW
  3. NRC:
    • Daily nuclear capacity factor
  4. EIA:
    • Monthly hydro generation data for Niagara and St. Lawrence

The main function first update the operation condition for load and generators from the historical data and store the modified mpc struct in mpcreduced Then it automatically calls the Optimal Power Flow and Power Flow test and store the result in resultOPF and resultPF, respectively.

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Vivienne Liu - [email protected]

Project Link: https://github.com/AndersonEnergyLab-Cornell/NYgrid

Acknowledgements

Owner
Anderson Energy Lab at Cornell
Cornell Research lab on sustainable energy, led by Prof. Lindsay Anderson
Anderson Energy Lab at Cornell
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022