A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Overview

Graph Wavelet Neural Network

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019).

Abstract

We present graph wavelet neural network (GWNN), a novel graph convolutional neural network (CNN), leveraging graph wavelet transform to address the shortcomings of previous spectral graph CNN methods that depend on graph Fourier transform. Different from graph Fourier transform, graph wavelet transform can be obtained via a fast algorithm without requiring matrix eigendecomposition with high computational cost. Moreover, graph wavelets are sparse and localized in vertex domain, offering high efficiency and good interpretability for graph convolution. The proposed GWNN significantly outperforms previous spectral graph CNNs in the task of graph-based semi-supervised classification on three benchmark datasets: Cora, Citeseer and Pubmed.

A reference Tensorflow implementation is accessible [here].

This repository provides an implementation of Graph Wavelet Neural Network as described in the paper:

Graph Wavelet Neural Network. Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, Xueqi Cheng. ICLR, 2019. [Paper]


Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0
scikit-learn      0.20.0
PyGSP             0.5.1

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Cora` is included in the `input/` directory. In addition to the edgelist there is a JSON file with the sparse features and a csv with the target variable.

The **feature matrix** is a sparse binary one it is stored as a json. Nodes are keys of the json and feature indices are the values. For each node feature column ids are stored as elements of a list. The feature matrix is structured as:

{ 0: [0, 1, 38, 1968, 2000, 52727],
  1: [10000, 20, 3],
  2: [],
  ...
  n: [2018, 10000]}

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

Training the model is handled by the src/main.py script which provides the following command line arguments.

Input and output options

  --edge-path        STR   Input graph path.   Default is `input/cora_edges.csv`.
  --features-path    STR   Features path.      Default is `input/cora_features.json`.
  --target-path      STR   Target path.        Default is `input/cora_target.csv`.
  --log-path         STR   Log path.           Default is `logs/cora_logs.json`.

Model options

  --epochs                INT       Number of Adam epochs.         Default is 200.
  --learning-rate         FLOAT     Number of training epochs.     Default is 0.01.
  --weight-decay          FLOAT     Weight decay.                  Default is 5*10**-4.
  --filters               INT       Number of filters.             Default is 16.
  --dropout               FLOAT     Dropout probability.           Default is 0.5.
  --test-size             FLOAT     Test set ratio.                Default is 0.2.
  --seed                  INT       Random seeds.                  Default is 42.
  --approximation-order   INT       Chebyshev polynomial order.    Default is 3.
  --tolerance             FLOAT     Wavelet coefficient limit.     Default is 10**-4.
  --scale                 FLOAT     Heat kernel scale.             Default is 1.0.

Examples

The following commands learn the weights of a graph wavelet neural network and saves the logs. The first example trains a graph wavelet neural network on the default dataset with standard hyperparameter settings. Saving the logs at the default path.

python src/main.py

Training a model with more filters in the first layer.

python src/main.py --filters 32

Approximationg the wavelets with polynomials that have an order of 5.

python src/main.py --approximation-order 5

License


Comments
  • what's the meanning of the

    what's the meanning of the "feature matrix"?

    Hello author, sorry about a stupid question. But the Cora dataset has Cora.cites corresponding your cora_edges.csv, and Cora.content's paper index and paper category for your cora_target.csv, so I don't understand the meanning of your cora_features.json . In the beginning, I just think it's an adjacency matrix of all nodes(paper index), however, the content are inconsistent. Such as ,in cora_edges.csv it's as the picture as follw: image and in cora_features.json it's : image So I am confused , and hope for your answer. Thank you very much.

    opened by CindyTing 7
  • How can l use this code for graph classification ?

    How can l use this code for graph classification ?

    Hi @benedekrozemberczki ,

    Let me first thank you for this promising work.

    I would like to apply your GWNN to graph classification problems rather than nodes classification.

    Do you have any extension for that ?

    Thank you

    opened by Benjiou 4
  • the kernel

    the kernel

    Hi, author, There was a variable in the code called diagnoal_weight_filter 屏幕截图 2021-01-16 204442 I think the variable should change in the trainning time,but it never changed when I debugging. It's so confusing. And I wonder if the variable conduct the same role as the diagnoal_weight_filer in the tensorflow implementation will change.

    opened by maxmit233 3
  • Fatal Python error: Segmentation fault

    Fatal Python error: Segmentation fault

    hi, author. These days i've been watching the program. But when I run on this code, I find an error happened during the time. Can you give me some suggestions?

    image

    image

    opened by Evelyn-coder 2
  • something about wavelet basis

    something about wavelet basis

    Hello~, Thank you for your paper. when I read the paper, I think about what is the connection between wavelet basis and Fourier basis, can you give me some tips?

    opened by ICDI0906 1
  • RuntimeError: the derivative for 'index' is not implemented

    RuntimeError: the derivative for 'index' is not implemented

    Hello, I was running the example and got this error.

    python src/main.py
    +---------------------+----------------------------+
    |      Parameter      |           Value            |
    +=====================+============================+
    | Approximation order | 20                         |
    +---------------------+----------------------------+
    | Dropout             | 0.500                      |
    +---------------------+----------------------------+
    | Edge path           | ./input/cora_edges.csv     |
    +---------------------+----------------------------+
    | Epochs              | 300                        |
    +---------------------+----------------------------+
    | Features path       | ./input/cora_features.json |
    +---------------------+----------------------------+
    | Filters             | 16                         |
    +---------------------+----------------------------+
    | Learning rate       | 0.001                      |
    +---------------------+----------------------------+
    | Log path            | ./logs/cora_logs.json      |
    +---------------------+----------------------------+
    | Scale               | 1                          |
    +---------------------+----------------------------+
    | Seed                | 42                         |
    +---------------------+----------------------------+
    | Target path         | ./input/cora_target.csv    |
    +---------------------+----------------------------+
    | Test size           | 0.200                      |
    +---------------------+----------------------------+
    | Tolerance           | 0.000                      |
    +---------------------+----------------------------+
    | Weight decay        | 0.001                      |
    +---------------------+----------------------------+
    
    Wavelet calculation and sparsification started.
    
    100%|███████████████████████████████████████████████████████████████████████████████████| 2708/2708 [00:11<00:00, 237.23it/s]
    100%|███████████████████████████████████████████████████████████████████████████████████| 2708/2708 [00:11<00:00, 228.91it/s]
    
    Normalizing the sparsified wavelets.
    
    Density of wavelets: 0.2%.
    Density of inverse wavelets: 0.04%.
    
    Training.
    
    Loss:   0%|                                                                                          | 0/300 [00:00<?, ?it/s]Traceback (most recent call last):
      File "src/main.py", line 24, in <module>
        main()
      File "src/main.py", line 18, in main
        trainer.fit()
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn.py", line 131, in fit
        prediction = self.model(self.phi_indices, self.phi_values , self.phi_inverse_indices, self.phi_inverse_values, self.feature_indices, self.feature_values)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn.py", line 44, in forward
        deep_features_1 = self.convolution_1(phi_indices, phi_values, phi_inverse_indices, phi_inverse_values, feature_indices, feature_values, self.args.dropout)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn_layer.py", line 55, in forward
        localized_features = spmm(phi_product_indices, phi_product_values, self.ncount, filtered_features)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch_sparse/spmm.py", line 21, in spmm
        out = scatter_add(out, row, dim=0, dim_size=m)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch_scatter/add.py", line 73, in scatter_add
        return out.scatter_add_(dim, index, src)
    RuntimeError: the derivative for 'index' is not implemented
    
    opened by youjinChung 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023