Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

Overview

[Paper] [Project page]

This repository contains code for the paper:

Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Multisensory Features. arXiv, 2018

Contents

This release includes code and models for:

  • On/off-screen source separation: separating the speech of an on-screen speaker from background sounds.
  • Blind source separation: audio-only source separation using u-net and PIT.
  • Sound source localization: visualizing the parts of a video that correspond to sound-making actions.
  • Self-supervised audio-visual features: a pretrained 3D CNN that can be used for downstream tasks (e.g. action recognition, source separation).

Setup

pip install tensorflow     # for CPU evaluation only
pip install tensorflow-gpu # for GPU support

We used TensorFlow version 1.8, which can be installed with:

pip install tensorflow-gpu==1.8
  • Install other python dependencies
pip install numpy matplotlib pillow scipy
  • Download the pretrained models and sample data
./download_models.sh
./download_sample_data.sh

Pretrained audio-visual features

We have provided the features for our fused audio-visual network. These features were learned through self-supervised learning. Please see shift_example.py for a simple example that uses these pretrained features.

Audio-visual source separation

To try the on/off-screen source separation model, run:

python sep_video.py ../data/translator.mp4 --model full --duration_mult 4 --out ../results/

This will separate a speaker's voice from that of an off-screen speaker. It will write the separated video files to ../results/, and will also display them in a local webpage, for easier viewing. This produces the following videos (click to watch):

Input On-screen Off-screen

We can visually mask out one of the two on-screen speakers, thereby removing their voice:

python sep_video.py ../data/crossfire.mp4 --model full --mask l --out ../results/
python sep_video.py ../data/crossfire.mp4 --model full --mask r --out ../results/

This produces the following videos (click to watch):

Source Left Right

Blind (audio-only) source separation

This baseline trains a u-net model to minimize a permutation invariant loss.

python sep_video.py ../data/translator.mp4 --model unet_pit --duration_mult 4 --out ../results/

The model will write the two separated streams in an arbitrary order.

Visualizing the locations of sound sources

To view the self-supervised network's class activation map (CAM), use the --cam flag:

python sep_video.py ../data/translator.mp4 --model full --cam --out ../results/

This produces a video in which the CAM is overlaid as a heat map:

Action recognition and fine-tuning

We have provided example code for training an action recognition model (e.g. on the UCF-101 dataset) in videocls.py). This involves fine-tuning our pretrained, audio-visual network. It is also possible to train this network with only visual data (no audio).

Citation

If you use this code in your research, please consider citing our paper:

@article{multisensory2018,
  title={Audio-Visual Scene Analysis with Self-Supervised Multisensory Features},
  author={Owens, Andrew and Efros, Alexei A},
  journal={arXiv preprint arXiv:1804.03641},
  year={2018}
}

Updates

  • 11/08/18: Fixed a bug in the class activation map example code. Added Tensorflow 1.9 compatibility.

Acknowledgements

Our u-net code draws from this implementation of pix2pix.

Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
IntelĀ® Nervanaā„¢ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022