TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

Overview

TalkingHead-1KH Dataset

Python 3.7 License CC Format MP4 Resolution 512×512 Videos 500k

TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid:

One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing
Ting-Chun Wang (NVIDIA), Arun Mallya (NVIDIA), Ming-Yu Liu (NVIDIA)
https://nvlabs.github.io/face-vid2vid/
https://arxiv.org/abs/2011.15126.pdf

The dataset consists of 500k video clips, of which about 80k are greater than 512x512 resolution. Only videos under permissive licenses are included. Note that the number of videos differ from that in the original paper because a more robust preprocessing script was used to split the videos. For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing.

Download

Unzip the video metadata

First, unzip the metadata and put it under the root directory:

unzip data_list.zip

Unit test

This step downloads a small subset of the dataset to verify the scripts are working on your computer. You can also skip this step if you want to directly download the entire dataset.

bash videos_download_and_crop.sh small

The processed clips should appear in small/cropped_clips.

Download the entire dataset

Please run

bash videos_download_and_crop.sh train

The script will automatically download the YouTube videos, split them into short clips, and then crop and trim them to include only the face regions. The final processed clips should appear in train/cropped_clips.

Evaluation

To download the evaluation set which consists of only 1080p videos, please run

bash videos_download_and_crop.sh val

The processed clips should appear in val/cropped_clips.

We also provide the reconstruction results synthesized by our model here. For each video, we use only the first frame to reconstruct all the following frames.

Furthermore, for models trained using the VoxCeleb2 dataset, we also provide comparisons using another model trained on the VoxCeleb2 dataset. Please find the reconstruction results here.

Licenses

The individual videos were published in YouTube by their respective authors under Creative Commons BY 3.0 license. The metadata file, the download script file, the processing script file, and the documentation file are made available under MIT license. You can use, redistribute, and adapt it, as long as you (a) give appropriate credit by citing our paper, (b) indicate any changes that you've made, and (c) distribute any derivative works under the same license.

Privacy

When collecting the data, we were careful to only include videos that – to the best of our knowledge – were intended for free use and redistribution by their respective authors. That said, we are committed to protecting the privacy of individuals who do not wish their videos to be included.

If you would like to remove your video from the dataset, you can either

  1. Go to YouTube and change the license of your video, or remove your video entirely.
  2. Contact [email protected]. Please include your YouTube video link in the email.

Acknowledgements

This webpage borrows heavily from the FFHQ-dataset page.

Citation

If you use this dataset for your work, please cite

@inproceedings{wang2021facevid2vid,
  title={One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing},
  author={Ting-Chun Wang and Arun Mallya and Ming-Yu Liu},
  booktitle={CVPR},
  year={2021}
}
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022