Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

Related tags

Deep Learningquince
Overview

🍐 quince

Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

Image of Gamma Sweep

🍐 Installation

$ git clone [email protected]:anndvision/quince.git
$ cd quince
$ conda env create -f environment.yml
$ conda activate quince

🍐 Example: Replicating IHDP results

Step 1: Hyperparameter Tuning (optional)

Find the best hyperparameters using the tune function, on a dataset like ihdp for an ensemble model.

$ quince \
    tune \
        --job-dir ~/experiments/quince/tuning/ \
        --max-samples 500 \
        --gpu-per-trial 0.2 \
    ihdp \
    ensemble

Step 2: Train ensembles over a number of trials

Here, we use the train function to fit an ensemble of mixture density networks on 10 realizations of the ihdp with hidden confounding dataset. For the full results change --num-trials 1000

$ quince \
    train \
        --job-dir ~/experiments/quince/ \
        --num-trials 10 \
        --gpu-per-trial 0.2 \
    ihdp \
    ensemble \
        --dim-hidden 200 \
        --num-components 5 \
        --depth 4 \
        --negative-slope 0.3 \
        --dropout-rate 0.5 \
        --spectral-norm 6.0 \
        --learning-rate 5e-4 \
        --batch-size 200 \
        --epochs 500 \
        --ensemble-size 10

Step 3: Evaluate

Plots will be written to the experiment-dir

$ quince \
    evaluate \
        --experiment-dir ~/experiments/quince/ihdp/hc-True_beta-None/ensemble/dh-200_nc-5_dp-4_ns-0.3_dr-0.5_sn-6.0_lr-0.0005_bs-200_ep-500/ \
    compute-intervals \
        --gpu-per-trial 0.2 \
    compute-intervals-kernel \
        --gpu-per-trial 0.2 \
    plot-deferral \
    plot-errorbars \
        --trial 0

🍐 Replicating Other Results

Simulated Data

$ quince \
    train \
        --job-dir ~/experiments/quince/ \
        --num-trials 50 \
        --gpu-per-trial 0.2 \
    synthetic \
        --gamma-star 1.65 \
    ensemble \
        --dim-hidden 200 \
        --num-components 5 \
        --depth 4 \
        --negative-slope 0.0 \
        --dropout-rate 0.1 \
        --spectral-norm 6.0 \
        --learning-rate 1e-3 \
        --batch-size 32 \
        --epochs 500 \
        --ensemble-size 10
$ quince \
    evaluate \
        --experiment-dir ~/experiments/quince/synthetic/ne-1000_gs-1.65_th-4.00_be-0.75_si-1.00_dl-2.00/ensemble/dh-200_nc-5_dp-4_ns-0.0_dr-0.1_sn-6.0_lr-0.001_bs-32_ep-500/ \
    compute-intervals \
        --gpu-per-trial 0.2 \
    compute-intervals-kernel \
        --gpu-per-trial 0.2 \
    plot-ignorance \
    print-summary \
    print-summary-kernel \
    paired-t-test

Repeat the above for --gamma-star 2.72 and --gamma-star 4.48.

HCMNIST

$ quince \
    train \
        --job-dir ~/experiments/quince/ \
        --num-trials 20 \
        --gpu-per-trial 0.5 \
    hcmnist \
        --gamma-star 1.65 \
    ensemble \
        --dim-hidden 200 \
        --num-components 5 \
        --depth 2 \
        --negative-slope 0.0 \
        --dropout-rate 0.15 \
        --spectral-norm 3.0 \
        --learning-rate 5e-4 \
        --batch-size 200 \
        --epochs 500 \
        --ensemble-size 5
$ quince \
    evaluate \
        --experiment-dir ~/experiments/quince/hcmnist/gs-1.65_th-4.00_be-0.75_si-1.00_dl-2.00/ensemble/dh-200_nc-5_dp-2_ns-0.0_dr-0.15_sn-3.0_lr-0.0005_bs-200_ep-500/ \
    compute-intervals \
        --gpu-per-trial 1.0 \
    print-summary

Repeat the above for --gamma-star 2.72 and --gamma-star 4.48.

Owner
Andrew Jesson
PhD in Machine Learning at University of Oxford @OATML
Andrew Jesson
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022