Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Related tags

Deep LearningmRASP2
Overview

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

The code for training mCOLT/mRASP2, a multilingual NMT training framework, implemented based on fairseq.

mRASP2: paper

mRASP: paper, code


News

We have released two versions, this version is the original one. In this implementation:

  • You should first merge all data, by pre-pending language token before each sentence to indicate the language.
  • AA/RAS muse be done off-line (before binarize), check this toolkit.

New implementation: https://github.com/PANXiao1994/mRASP2/tree/new_impl

  • Acknowledgement: This work is supported by Bytedance. We thank Chengqi for uploading all files and checkpoints.

Introduction

mRASP2/mCOLT, representing multilingual Contrastive Learning for Transformer, is a multilingual neural machine translation model that supports complete many-to-many multilingual machine translation. It employs both parallel corpora and multilingual corpora in a unified training framework. For detailed information please refer to the paper.

img.png

Pre-requisite

pip install -r requirements.txt

Training Data and Checkpoints

We release our preprocessed training data and checkpoints in the following.

Dataset

We merge 32 English-centric language pairs, resulting in 64 directed translation pairs in total. The original 32 language pairs corpus contains about 197M pairs of sentences. We get about 262M pairs of sentences after applying RAS, since we keep both the original sentences and the substituted sentences. We release both the original dataset and dataset after applying RAS.

Dataset #Pair
32-lang-pairs-TRAIN 197603294
32-lang-pairs-RAS-TRAIN 262662792
mono-split-a -
mono-split-b -
mono-split-c -
mono-split-d -
mono-split-e -
mono-split-de-fr-en -
mono-split-nl-pl-pt -
32-lang-pairs-DEV-en-centric -
32-lang-pairs-DEV-many-to-many -
Vocab -
BPE Code -

Checkpoints & Results

  • Please note that the provided checkpoint is sightly different from that in the paper. In the following sections, we report the results of the provided checkpoints.

English-centric Directions

We report tokenized BLEU in the following table. (check eval.sh for details)

6e6d-no-mono 12e12d-no-mono 12e12d
en2cs/wmt16 21.0 22.3 23.8
cs2en/wmt16 29.6 32.4 33.2
en2fr/wmt14 42.0 43.3 43.4
fr2en/wmt14 37.8 39.3 39.5
en2de/wmt14 27.4 29.2 29.5
de2en/wmt14 32.2 34.9 35.2
en2zh/wmt17 33.0 34.9 34.1
zh2en/wmt17 22.4 24.0 24.4
en2ro/wmt16 26.6 28.1 28.7
ro2en/wmt16 36.8 39.0 39.1
en2tr/wmt16 18.6 20.3 21.2
tr2en/wmt16 22.2 25.5 26.1
en2ru/wmt19 17.4 18.5 19.2
ru2en/wmt19 22.0 23.2 23.6
en2fi/wmt17 20.2 22.1 22.9
fi2en/wmt17 26.1 29.5 29.7
en2es/wmt13 32.8 34.1 34.6
es2en/wmt13 32.8 34.6 34.7
en2it/wmt09 28.9 30.0 30.8
it2en/wmt09 31.4 32.7 32.8

Unsupervised Directions

We report tokenized BLEU in the following table. (check eval.sh for details)

12e12d
en2pl/wmt20 6.2
pl2en/wmt20 13.5
en2nl/iwslt14 8.8
nl2en/iwslt14 27.1
en2pt/opus100 18.9
pt2en/opus100 29.2

Zero-shot Directions

  • row: source language
  • column: target language We report sacreBLEU in the following table.
12e12d ar zh nl fr de ru
ar - 32.5 3.2 22.8 11.2 16.7
zh 6.5 - 1.9 32.9 7.6 23.7
nl 1.7 8.2 - 7.5 10.2 2.9
fr 6.2 42.3 7.5 - 18.9 24.4
de 4.9 21.6 9.2 24.7 - 14.4
ru 7.1 40.6 4.5 29.9 13.5 -

Training

export NUM_GPU=4 && bash train_w_mono.sh ${model_config}
  • We give example of ${model_config} in ${PROJECT_REPO}/examples/configs/parallel_mono_12e12d_contrastive.yml

Inference

  • You must pre-pend the corresponding language token to the source side before binarize the test data.
${final_res_file} python3 ${repo_dir}/scripts/utils.py ${res_file} ${ref_file} || exit 1; ">
fairseq-generate ${test_path} \
    --user-dir ${repo_dir}/mcolt \
    -s ${src} \
    -t ${tgt} \
    --skip-invalid-size-inputs-valid-test \
    --path ${ckpts} \
    --max-tokens ${batch_size} \
    --task translation_w_langtok \
    ${options} \
    --lang-prefix-tok "LANG_TOK_"`echo "${tgt} " | tr '[a-z]' '[A-Z]'` \
    --max-source-positions ${max_source_positions} \
    --max-target-positions ${max_target_positions} \
    --nbest 1 | grep -E '[S|H|P|T]-[0-9]+' > ${final_res_file}
python3 ${repo_dir}/scripts/utils.py ${res_file} ${ref_file} || exit 1;

Synonym dictionaries

We use the bilingual synonym dictionaries provised by MUSE.

We generate multilingual synonym dictionaries using this script, and apply RAS using this script.

Description File Size
dep=1 synonym_dict_raw_dep1 138.0 M
dep=2 synonym_dict_raw_dep2 1.6 G
dep=3 synonym_dict_raw_dep3 2.2 G

Contact

Please contact me via e-mail [email protected] or via wechat/zhihu

Citation

Please cite as:

@inproceedings{mrasp2,
  title = {Contrastive Learning for Many-to-many Multilingual Neural Machine Translation},
  author= {Xiao Pan and
           Mingxuan Wang and
           Liwei Wu and
           Lei Li},
  booktitle = {Proceedings of ACL 2021},
  year = {2021},
}
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021