Picka: A Python module for data generation and randomization.

Related tags

Data Analysispicka
Overview

Picka: A Python module for data generation and randomization.

Author: Anthony Long
Version: 1.0.1 - Fixed the broken image stuff. Whoops

What is Picka?

Picka generates randomized data for testing.

Data is generated both from a database of known good data (which is included), or by generating realistic data (valid), using string formatting (behind the scenes).

Picka has a function for any field you would need filled in. With selenium, something like would populate the "field-name-here" box for you, 100 times with random names.

for x in xrange(101):
        self.selenium.type('field-name-here', picka.male_name())

But this is just the beginning. Other ways to implement this, include using dicts:

user_information = {
        "first_name": picka.male_name(),
        "last_name": picka.last_name(),
        "email_address": picka.email(10, extension='example.org'),
        "password": picka.password_numerical(6),
}

This would provide:

{
        "first_name": "Jack",
        "last_name": "Logan",
        "email_address": "[email protected]",
        "password": "485444"
}

Don't forget, since all of the data is considered "clean" or valid - you can also use it to fill selects and other form fields with pre-defined values. For example, if you were to generate a state; picka.state() the result would be "Alabama". You can use this result to directly select a state in an address drop-down box.

Examples:

Selenium

def search_for_garbage():
        selenium.open('http://yahoo.com')
        selenium.type('id=search_box', picka.random_string(10))
        selenium.submit()

def test_search_for_garbage_results():
        search_for_garbage()
        selenium.wait_for_page_to_load('30000')
        assert selenium.get_xpath_count('id=results') == 0

Webdriver

driver = webdriver.Firefox()
driver.get("http://somesite.com")
x = {
        "name": [
                "#name",
                picka.name()
        ]
}
driver.find_element_by_css_selector(
        x["name"][0]).send_keys(x["name"][1]
)

Funcargs / pytest

def pytest_generate_tests(metafunc):
        if "test_string" in metafunc.funcargnames:
                for i in range(10):
                        metafunc.addcall(funcargs=dict(numiter=picka.random_string(20)))

def test_func(test_string):
        assert test_string.isalpha()
        assert len(test_string) == 20

MySQL / SQLite

first, last, age = picka.first_name(), picka.last_name(), picka.age()
cursor.execute(
   "insert into user_data (first_name, last_name, age) VALUES (?, ?, ?)",
   (first, last, age)
)

HTTP

def post(host, data):
        http = httplib.HTTP(host)
        return http.send(data)

def test_post_result():
        post("www.spam.egg/bacon.htm", picka.random_string(10))
Comments
  • No test suite

    No test suite

    Slightly ironic, a test data generation toolkit which doesnt have a test suite.

    Also setup.py doesnt declare Python 3 support, hence the need for a test suite to validate it works correctly.

    opened by jayvdb 1
  • Additional Functionality for Testers to Add Their Own Data

    Additional Functionality for Testers to Add Their Own Data

    Picka provides general data for testing. Leveraging this effort provides custom test data. Test data is not limited to just preconfigured values when it's possible to add custom test data. Data can be accessed sequentially, randomly or completely.

    opened by bkuehlhorn 1
  • Fixed test file, added alternative sentence maker

    Fixed test file, added alternative sentence maker

    1. Fixed usage of number in tests (it takes one arg, not two)
    2. Added sentence_actual, which returns an actual sentence from the Sherlock text.
    3. Added _picka._Book class to hold the text and split sentences read from Sherlock. Users can call sentence() without reading the entire file again and again.
    4. Added test of sentence_actual to picka.tests

    The sentence_actual function has some nice features:

    1. You're much less likely to get a sentence fragment
    2. You can specify a minimum and maximum number of words
    3. It should be relatively efficient, because the split sentences are cached by the _Book class.

    The sentences aren't always perfect, but I think that has to do with the source. A book other than Sherlock Holmes, preferably one with less dialog, would give more "normal" sentences.

    opened by TadLeonard 1
  • Library does not take locale into account

    Library does not take locale into account

    The library assumes an English locale is used (e.g., English-language hardcoded month names). Ideally the library would use locale-dependent constants so that computations are done correctly (e.g., the duration of a month in month_and_day):

    >>> locale.setlocale(locale.LC_ALL, 'it_IT')
    'it_IT'
    >>> picka.month()
    'Marzo'
    >>> picka.month_and_day()
    'Maggio 2'
    
    opened by svisser 0
  • picka.age will return ages outside of the bounds

    picka.age will return ages outside of the bounds

    If I call picka.age(1, 1) repeatedly I get 1 and 2 as results. I would have expected it to always return 1. Note that this situation can occur when passing variables to picka.age, I don't expect people to write this in their code themselves.

    I can also get ages outside of the bounds when I call picka.age(0, 1) which resorts to using the default values and can therefore return any age within the default values.

    opened by svisser 0
  • Module name means

    Module name means "cunt"

    I'm not sure if this is a real issue, but when I look at this module I cannot do so with a straight face. "Picka" is "cunt" in Serbian, Macedonian, Bosnian, Croatian, and I'm unsure as to whether there are other languages where this holds.

    While not grounds for any specific action, I find this largely amusing and just wanted to share.

    opened by geomaster 2
Releases(v0.96)
A program that uses an API and a AI model to get info of sotcks

Stock-Market-AI-Analysis I dont mind anyone using this code but please give me credit A program that uses an API and a AI model to get info of stocks

1 Dec 17, 2021
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021
Automated Exploration Data Analysis on a financial dataset

Automated EDA on financial dataset Just a simple way to get automated Exploration Data Analysis from financial dataset (OHLCV) using Streamlit and ta.

Darío López Padial 28 Nov 27, 2022
An Indexer that works out-of-the-box when you have less than 100K stored Documents

U100KIndexer An Indexer that works out-of-the-box when you have less than 100K stored Documents. U100K means under 100K. At 100K stored Documents with

Jina AI 7 Mar 15, 2022
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021
Python Practicum - prepare for your Data Science interview or get a refresher.

Python-Practicum Python Practicum - prepare for your Data Science interview or get a refresher. Data Data visualization using data on births from the

Jovan Trajceski 1 Jul 27, 2021
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022
Pipeline and Dataset helpers for complex algorithm evaluation.

tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst

Machine Learning and Data Analytics Lab FAU 3 Dec 07, 2022
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
This is a python script to navigate and extract the FSD50K dataset

FSD50K navigator This is a script I use to navigate the sound dataset from FSK50K.

sweemeng 2 Nov 23, 2021
Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022
Jupyter notebooks for the book "The Elements of Statistical Learning".

This repository contains Jupyter notebooks implementing the algorithms found in the book and summary of the textbook.

Madiyar 369 Dec 30, 2022
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
Probabilistic reasoning and statistical analysis in TensorFlow

TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl

3.8k Jan 05, 2023
Techdegree Data Analysis Project 2

Basketball Team Stats Tool In this project you will be writing a program that reads from the "constants" data (PLAYERS and TEAMS) in constants.py. Thi

2 Oct 23, 2021
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023