Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

Overview

WeRateDogs Twitter Data from 2015 to 2017

Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

Table of Contents

  1. Introduction
  2. Project Overview
  3. Requirements
  4. Project Movitivation
  5. Key Files
  6. Results
  7. Licensing, Authors, and Acknowledgements

1. Introduction

Real-world data rarely comes clean. Using Python and its libraries, I gathered data from a variety of sources and in a variety of formats, assessed its quality and tidiness, then cleaned it. This is called data wrangling. I documented my wrangling efforts in a Jupyter Notebook, then showcased them through analyses and visualizations using Python and its libraries.

The dataset that I wrangled (and analyzing and visualizing) was the tweet archive of Twitter user @dog_rates, also known as WeRateDogs. WeRateDogs is a Twitter account that rates people's dogs with a humorous comment about the dog. These ratings almost always have a denominator of 10. The numerators, though? Almost always greater than 10. 11/10, 12/10, 13/10, etc. Why? Because "they're good dogs Brent." WeRateDogs has over 4 million followers and has received international media coverage.

WeRateDogs downloaded their Twitter archive and sent it to Udacity via email to use in this project. This archive contains basic tweet data (tweet ID, timestamp, text, etc.) for all 5000+ of their tweets as they stood on August 1, 2017.

WRD_twitter_banner

2. Project Overview

Tasks in this project were as follows:

  • Step 1: Gathering data
  • Step 2: Assessing data
  • Step 3: Cleaning data
  • Step 4: Storing data
  • Step 5: Analyzing, and visualizing data
  • Step 6: Reporting
    • My data wrangling efforts
    • My data analyses and visualizations

3. Requirements

This project was created in a Jupyter Notebook made available via Anaconda and written in python.\ The following versions of languages and libraries were used in creating this project:

  • python==2.7.18
  • ipython==7.31.0
  • matplotlib==3.5.1
  • numpy==1.22.0
  • pandas==1.3.5
  • requests==2.27.1
  • scipy==1.7.3
  • seaborn==0.11.2
  • tweepy==4.4.0

4. Project Motivation

The goal: wrangle WeRateDogs Twitter data to create interesting and trustworthy analyses and visualizations. The Twitter archive is great, but it only contains very basic tweet information. Additional gathering, then assessing and cleaning is required for "Wow!"-worthy analyses and visualizations.

The overall purpose of this Udacity project was to refine our data wrangling skills with secondary importance on delivering multiple polished visualzations and tell a story or solve a problem. In other words, the journey was more important than the destination.

5. Key Files

  • twitter_archive_enhanced.csv
    The WeRateDogs Twitter archive contains basic tweet data for all 5000+ of their tweets, but not everything. One column the archive does contain though: each tweet's text, which Udacity used to extract rating, dog name, and dog "stage" (i.e. doggo, floofer, pupper, and puppo) to make this Twitter archive "enhanced." Of the 5000+ tweets, only those tweets with ratings were filtered. The data was extracted programmatically by Udacity, but the data was left messy on purpose. The ratings aren't all correct. Same goes for the dog names and probably dog stages (see below for more information on these) too. I had to assess and clean these columns to use them for analysis and visualization.

  • tweet_json.txt
    Resulting data queried using Twitter's API. It was necessary to gather the retweet count and favorite count which were omitted from the basic twitter_archive_enhanced.csv.

  • image-predictions.tsv
    Udacity ran every image in the WeRateDogs Twitter archive was through a neural network that can classify breeds of dogs. The results: a table full of image predictions (the top three only) alongside each tweet ID, image URL, and the image number that corresponded to the most confident prediction (numbered 1 to 4 since tweets can have up to four images).

  • wrangle_act.ipynb
    This contains the bulk of the project. This notebook contains all code for gathering, assessing, cleaning, analyzing, and visualizing data.

  • wrangle_report.pdf
    This was a report for documenting the data wrangling process: gather, assess, and clean.

  • act_report.pdf
    Documentation of analysis and insights

  • twitter_archive_master.csv
    Cleaned and merged dataset containing data from the 3 source data sets

6. Results

As said in the project motivation, the data wrangling process itself was more relevant than uncovering insights. At any rate, I was able to answer the following 4 questions:

  1. What is the most retweeted tweet?
    From the data I had from 2015 to 2017, this gem was the most retweeted tweet.
  2. What is the most common rating?
    12/10
  3. What are the most common breeds found by the neural network?
    The top 5, from less to most common, were Pug, Chihuahua, Welsh Corgi, Labrador Retriever, then finally Golden Retriever.
  4. What is the average retweet count for each rating?
    Screen Shot 2022-01-11 at 21 22 39
    I saw a general positive correlation between dog rating and retweet count (i.e. popularity). 13/10 and 14/10 tweets had the most retweets on average. Further details of the results can be seen in the act_report.pdf file.

7. Licensing, Authors, and Acknowledgements

All data provided and sourced by Udacity.

Owner
Keenan Cooper
Keenan Cooper
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Cloudera 759 Jan 07, 2023
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

PB2 101 Dec 07, 2022
A library to create multi-page Streamlit applications with ease.

A library to create multi-page Streamlit applications with ease.

Jackson Storm 107 Jan 04, 2023
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
A variant of LinUCB bandit algorithm with local differential privacy guarantee

Contents LDP LinUCB Description Model Architecture Dataset Environment Requirements Script Description Script and Sample Code Script Parameters Launch

Weiran Huang 4 Oct 25, 2022
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
A meta plugin for processing timelapse data timepoint by timepoint in napari

napari-time-slicer A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t dat

Robert Haase 2 Oct 13, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets

HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets that can be described as multidimensional arrays o

HyperSpy 411 Dec 27, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
Open source platform for Data Science Management automation

Hydrosphere examples This repo contains demo scenarios and pre-trained models to show Hydrosphere capabilities. Data and artifacts management Some mod

hydrosphere.io 6 Aug 10, 2021
LynxKite: a complete graph data science platform for very large graphs and other datasets.

LynxKite is a complete graph data science platform for very large graphs and other datasets. It seamlessly combines the benefits of a friendly graphical interface and a powerful Python API.

124 Dec 14, 2022
Projeto para realizar o RPA Challenge . Utilizando Python e as bibliotecas Selenium e Pandas.

RPA Challenge in Python Projeto para realizar o RPA Challenge (www.rpachallenge.com), utilizando Python. O objetivo deste desafio รฉ criar um fluxo de

Henrique A. Lourenรงo 1 Apr 12, 2022
This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

๐Ÿ“ˆ Statistical Quality Control ๐Ÿ“‰ This repo contains a simple but effective tool made using python which can be used for quality control in statistica

SasiVatsal 8 Oct 18, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
International Space Station data with Python research ๐ŸŒŽ

International Space Station data with Python research ๐ŸŒŽ Plotting ISS trajectory, calculating the velocity over the earth and more. Plotting trajector

Facundo Pedaccio 41 Jun 16, 2022