Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

Overview

WeRateDogs Twitter Data from 2015 to 2017

Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

Table of Contents

  1. Introduction
  2. Project Overview
  3. Requirements
  4. Project Movitivation
  5. Key Files
  6. Results
  7. Licensing, Authors, and Acknowledgements

1. Introduction

Real-world data rarely comes clean. Using Python and its libraries, I gathered data from a variety of sources and in a variety of formats, assessed its quality and tidiness, then cleaned it. This is called data wrangling. I documented my wrangling efforts in a Jupyter Notebook, then showcased them through analyses and visualizations using Python and its libraries.

The dataset that I wrangled (and analyzing and visualizing) was the tweet archive of Twitter user @dog_rates, also known as WeRateDogs. WeRateDogs is a Twitter account that rates people's dogs with a humorous comment about the dog. These ratings almost always have a denominator of 10. The numerators, though? Almost always greater than 10. 11/10, 12/10, 13/10, etc. Why? Because "they're good dogs Brent." WeRateDogs has over 4 million followers and has received international media coverage.

WeRateDogs downloaded their Twitter archive and sent it to Udacity via email to use in this project. This archive contains basic tweet data (tweet ID, timestamp, text, etc.) for all 5000+ of their tweets as they stood on August 1, 2017.

WRD_twitter_banner

2. Project Overview

Tasks in this project were as follows:

  • Step 1: Gathering data
  • Step 2: Assessing data
  • Step 3: Cleaning data
  • Step 4: Storing data
  • Step 5: Analyzing, and visualizing data
  • Step 6: Reporting
    • My data wrangling efforts
    • My data analyses and visualizations

3. Requirements

This project was created in a Jupyter Notebook made available via Anaconda and written in python.\ The following versions of languages and libraries were used in creating this project:

  • python==2.7.18
  • ipython==7.31.0
  • matplotlib==3.5.1
  • numpy==1.22.0
  • pandas==1.3.5
  • requests==2.27.1
  • scipy==1.7.3
  • seaborn==0.11.2
  • tweepy==4.4.0

4. Project Motivation

The goal: wrangle WeRateDogs Twitter data to create interesting and trustworthy analyses and visualizations. The Twitter archive is great, but it only contains very basic tweet information. Additional gathering, then assessing and cleaning is required for "Wow!"-worthy analyses and visualizations.

The overall purpose of this Udacity project was to refine our data wrangling skills with secondary importance on delivering multiple polished visualzations and tell a story or solve a problem. In other words, the journey was more important than the destination.

5. Key Files

  • twitter_archive_enhanced.csv
    The WeRateDogs Twitter archive contains basic tweet data for all 5000+ of their tweets, but not everything. One column the archive does contain though: each tweet's text, which Udacity used to extract rating, dog name, and dog "stage" (i.e. doggo, floofer, pupper, and puppo) to make this Twitter archive "enhanced." Of the 5000+ tweets, only those tweets with ratings were filtered. The data was extracted programmatically by Udacity, but the data was left messy on purpose. The ratings aren't all correct. Same goes for the dog names and probably dog stages (see below for more information on these) too. I had to assess and clean these columns to use them for analysis and visualization.

  • tweet_json.txt
    Resulting data queried using Twitter's API. It was necessary to gather the retweet count and favorite count which were omitted from the basic twitter_archive_enhanced.csv.

  • image-predictions.tsv
    Udacity ran every image in the WeRateDogs Twitter archive was through a neural network that can classify breeds of dogs. The results: a table full of image predictions (the top three only) alongside each tweet ID, image URL, and the image number that corresponded to the most confident prediction (numbered 1 to 4 since tweets can have up to four images).

  • wrangle_act.ipynb
    This contains the bulk of the project. This notebook contains all code for gathering, assessing, cleaning, analyzing, and visualizing data.

  • wrangle_report.pdf
    This was a report for documenting the data wrangling process: gather, assess, and clean.

  • act_report.pdf
    Documentation of analysis and insights

  • twitter_archive_master.csv
    Cleaned and merged dataset containing data from the 3 source data sets

6. Results

As said in the project motivation, the data wrangling process itself was more relevant than uncovering insights. At any rate, I was able to answer the following 4 questions:

  1. What is the most retweeted tweet?
    From the data I had from 2015 to 2017, this gem was the most retweeted tweet.
  2. What is the most common rating?
    12/10
  3. What are the most common breeds found by the neural network?
    The top 5, from less to most common, were Pug, Chihuahua, Welsh Corgi, Labrador Retriever, then finally Golden Retriever.
  4. What is the average retweet count for each rating?
    Screen Shot 2022-01-11 at 21 22 39
    I saw a general positive correlation between dog rating and retweet count (i.e. popularity). 13/10 and 14/10 tweets had the most retweets on average. Further details of the results can be seen in the act_report.pdf file.

7. Licensing, Authors, and Acknowledgements

All data provided and sourced by Udacity.

Owner
Keenan Cooper
Keenan Cooper
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Mohammed Hassan 13 Mar 31, 2022
NFCDS Workshop Beginners Guide Bioinformatics Data Analysis

Genomics Workshop FIXME: overview of workshop Code of Conduct All participants s

Elizabeth Brooks 2 Jun 13, 2022
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
๐Ÿงช Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

๐Ÿงช๐Ÿ“ˆ ๐Ÿ. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022
Data Analysis for First Year Laboratory at Imperial College, London.

Data Analysis for First Year Laboratory at Imperial College, London. For personal reference only, and to reference in lab reports and lab books.

Martin He 0 Aug 29, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
Code for the DH project "Dhimmis & Muslims โ€“ Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims โ€“ Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

1 Feb 07, 2022
Retail-Sim is python package to easily create synthetic dataset of retaile store.

Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists

Corca AI 7 Sep 30, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python ๐Ÿ“Š

Thomas 2 May 26, 2022
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
MeSH2Matrix - A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

SisonkeBiotik 6 Nov 30, 2022
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. ๐Ÿ˜ƒ Motiv

Souvik Pratiher 31 Dec 16, 2022
Analysiscsv.py for extracting analysis and exporting as CSV

wcc_analysis Lichess page documentation: https://lichess.org/page/world-championships Each WCC has a study, studies are fetched using: https://lichess

32 Apr 25, 2022